
Bacula
R©
Bacula Main Reference

The Leading Open Source Backup Solution.

Kern Sibbald

June 8, 2011
This manual documents Bacula version 4.0.7 (06 Jun 2011)

Copyright c© 1999-2010, Free Software Foundation Europe e.V.
Bacula R© is a registered trademark of Kern Sibbald.

Permission is granted to copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.2 published by the Free Software

Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A
copy of the license is included in the section entitled ”GNU Free Documentation License”.

Contents

1 What is Bacula? 1

1.1 Who Needs Bacula? . 1

1.2 Bacula Components or Services . 1

1.3 Bacula Configuration . 4

1.4 Conventions Used in this Document . 4

1.5 Quick Start . 5

1.6 Terminology . 5

1.7 What Bacula is Not . 7

1.8 Interactions Between the Bacula Services . 7

2 Release Version 5.0.2 and 5.0.3 9

3 New Features in 5.0.1 11

3.1 Truncate Volume after Purge . 11

3.2 Allow Higher Duplicates . 12

3.3 Cancel Lower Level Duplicates . 12

4 New Features in 5.0.0 13

4.1 Maximum Concurrent Jobs for Devices . 13

4.2 Restore from Multiple Storage Daemons . 13

4.3 File Deduplication using Base Jobs . 13

4.4 AllowCompression = <yes|no> . 14

4.5 Accurate Fileset Options . 14

4.6 Tab-completion for Bconsole . 15

4.7 Pool File and Job retention . 15

4.8 Read-only File Daemon using capabilities . 15

4.9 Bvfs API . 16

i

ii CONTENTS

4.10 Testing your Tape Drive . 16

4.11 New Block Checksum Device Directive . 17

4.12 New Bat Features . 17

4.12.1 Media List View . 17

4.12.2 Media Information View . 17

4.12.3 Job Information View . 17

4.12.4 Autochanger Content View . 19

4.13 Bat on Windows . 20

4.14 New Win32 Installer . 20

4.15 Win64 Installer . 20

4.16 Linux Bare Metal Recovery USB Key . 20

4.17 bconsole Timeout Option . 20

4.18 Important Changes . 20

4.18.1 Custom Catalog queries . 21

4.18.2 Deprecated parts . 21

4.19 Misc Changes . 21

5 Released Version 3.0.3 and 3.0.3a 23

6 New Features in Released Version 3.0.2 25

6.1 Full Restore from a Given JobId . 25

6.2 Source Address . 26

6.3 Show volume availability when doing restore . 26

6.4 Accurate estimate command . 26

7 New Features in 3.0.0 29

7.1 Accurate Backup . 29

7.1.1 Accurate = <yes|no> . 29

7.2 Copy Jobs . 29

7.3 ACL Updates . 32

7.4 Extended Attributes . 33

7.5 Shared objects . 34

7.6 Building Static versions of Bacula . 34

7.7 Virtual Backup (Vbackup) . 34

7.8 Catalog Format . 36

CONTENTS iii

7.9 64 bit Windows Client . 36

7.10 Duplicate Job Control . 37

7.10.1 Allow Duplicate Jobs = <yes|no> . 37

7.10.2 Allow Higher Duplicates = <yes|no> . 37

7.10.3 Cancel Running Duplicates = <yes|no> . 37

7.10.4 Cancel Queued Duplicates = <yes|no> . 38

7.11 TLS Authentication . 38

7.11.1 TLS Authenticate = yes . 38

7.12 bextract non-portable Win32 data . 38

7.13 State File updated at Job Termination . 38

7.14 MaxFullInterval = <time-interval> . 38

7.15 MaxDiffInterval = <time-interval> . 39

7.16 Honor No Dump Flag = <yes|no> . 39

7.17 Exclude Dir Containing = <filename-string> . 39

7.18 Bacula Plugins . 40

7.18.1 Plugin Directory . 40

7.18.2 Plugin Options . 40

7.18.3 Plugin Options ACL . 40

7.18.4 Plugin = <plugin-command-string> . 40

7.19 The bpipe Plugin . 41

7.20 Microsoft Exchange Server 2003/2007 Plugin . 42

7.20.1 Background . 42

7.20.2 Concepts . 42

7.20.3 Installing . 42

7.20.4 Backing Up . 43

7.20.5 Restoring . 43

7.20.6 Restoring to the Recovery Storage Group . 44

7.20.7 Restoring on Microsoft Server 2007 . 44

7.20.8 Caveats . 44

7.21 libdbi Framework . 45

7.22 Console Command Additions and Enhancements . 46

7.22.1 Display Autochanger Content . 46

7.22.2 list joblog job=xxx or jobid=nnn . 46

iv CONTENTS

7.22.3 Use separator for multiple commands . 46

7.22.4 Deleting Volumes . 46

7.23 Bare Metal Recovery . 47

7.24 Miscellaneous . 47

7.24.1 Allow Mixed Priority = <yes|no> . 47

7.24.2 Bootstrap File Directive – FileRegex . 48

7.24.3 Bootstrap File Optimization Changes . 48

7.24.4 Solaris ZFS/NFSv4 ACLs . 48

7.24.5 Virtual Tape Emulation . 48

7.24.6 Bat Enhancements . 49

7.24.7 RunScript Enhancements . 49

7.24.8 Status Enhancements . 49

7.24.9 Connect Timeout . 49

7.24.10 ftruncate for NFS Volumes . 49

7.24.11Support for Ubuntu . 49

7.24.12Recycle Pool = <pool-name> . 50

7.24.13FD Version . 50

7.24.14Max Run Sched Time = <time-period-in-seconds> . 50

7.24.15Max Wait Time = <time-period-in-seconds> . 50

7.24.16 Incremental—Differential Max Wait Time = <time-period-in-seconds> 50

7.24.17Max Run Time directives . 50

7.24.18Statistics Enhancements . 50

7.24.19ScratchPool = <pool-resource-name> . 51

7.24.20Enhanced Attribute Despooling . 52

7.24.21SpoolSize = <size-specification-in-bytes> . 52

7.24.22MaximumConsoleConnections = <number> . 52

7.24.23VerId = <string> . 52

7.24.24dbcheck enhancements . 52

7.24.25 --docdir configure option . 52

7.24.26 --htmldir configure option . 53

7.24.27 --with-plugindir configure option . 53

8 The Current State of Bacula 55

CONTENTS v

8.1 What is Implemented . 55

8.2 Advantages Over Other Backup Programs . 57

8.3 Current Implementation Restrictions . 57

8.4 Design Limitations or Restrictions . 58

8.5 Items to Note . 58

9 System Requirements 59

10 Supported Operating Systems 61

11 Supported Tape Drives 63

11.1 Unsupported Tape Drives . 64

11.2 FreeBSD Users Be Aware!!! . 64

11.3 Supported Autochangers . 64

11.4 Tape Specifications . 64

12 Getting Started with Bacula 67

12.1 Understanding Jobs and Schedules . 67

12.2 Understanding Pools, Volumes and Labels . 67

12.3 Setting Up Bacula Configuration Files . 68

12.3.1 Configuring the Console Program . 68

12.3.2 Configuring the Monitor Program . 69

12.3.3 Configuring the File daemon . 69

12.3.4 Configuring the Director . 70

12.3.5 Configuring the Storage daemon . 70

12.4 Testing your Configuration Files . 71

12.5 Testing Compatibility with Your Tape Drive . 71

12.6 Get Rid of the /lib/tls Directory . 71

12.7 Running Bacula . 71

12.8 Log Rotation . 72

12.9 Log Watch . 72

12.10Disaster Recovery . 72

13 Installing Bacula 73

13.1 Source Release Files . 73

13.2 Upgrading Bacula . 74

vi CONTENTS

13.3 Releases Numbering . 75

13.4 Dependency Packages . 76

13.5 Supported Operating Systems . 77

13.6 Building Bacula from Source . 77

13.7 What Database to Use? . 80

13.8 Quick Start . 80

13.9 Configure Options . 81

13.10Recommended Options for Most Systems . 86

13.11Red Hat . 86

13.12Solaris . 87

13.13FreeBSD . 88

13.14Win32 . 88

13.15One File Configure Script . 88

13.16Installing Bacula . 89

13.17Building a File Daemon or Client . 89

13.18Auto Starting the Daemons . 89

13.19Other Make Notes . 90

13.20Installing Tray Monitor . 91

13.20.1GNOME . 91

13.20.2KDE . 92

13.20.3Other window managers . 92

13.21Modifying the Bacula Configuration Files . 92

14 Critical Items to Implement Before Production 93

14.1 Critical Items . 93

14.2 Recommended Items . 94

15 A Brief Tutorial 95

15.1 Before Running Bacula . 95

15.2 Starting the Database . 96

15.3 Starting the Daemons . 96

15.4 Using the Director to Query and Start Jobs . 96

15.5 Running a Job . 98

15.6 Restoring Your Files . 102

CONTENTS vii

15.7 Quitting the Console Program . 104

15.8 Adding a Second Client . 104

15.9 When The Tape Fills . 105

15.10Other Useful Console Commands . 107

15.11Debug Daemon Output . 107

15.12Patience When Starting Daemons or Mounting Blank Tapes 108

15.13Difficulties Connecting from the FD to the SD . 108

15.14Daemon Command Line Options . 108

15.15Creating a Pool . 109

15.16Labeling Your Volumes . 109

15.17Labeling Volumes with the Console Program . 110

16 Customizing the Configuration Files 113

16.1 Character Sets . 114

16.2 Resource Directive Format . 115

16.2.1 Comments . 115

16.2.2 Upper and Lower Case and Spaces . 115

16.2.3 Including other Configuration Files . 115

16.2.4 Recognized Primitive Data Types . 116

16.3 Resource Types . 117

16.4 Names, Passwords and Authorization . 117

16.5 Detailed Information for each Daemon . 118

17 Configuring the Director 119

17.1 Director Resource Types . 119

17.2 The Director Resource . 120

17.3 The Job Resource . 122

17.4 The JobDefs Resource . 137

17.5 The Schedule Resource . 137

17.6 Technical Notes on Schedules . 140

17.7 The FileSet Resource . 140

17.8 FileSet Examples . 151

17.9 Backing up Raw Partitions . 156

17.10Excluding Files and Directories . 156

viii CONTENTS

17.11Windows FileSets . 156

17.12Testing Your FileSet . 158

17.13The Client Resource . 159

17.14The Storage Resource . 160

17.15The Pool Resource . 162

17.15.1The Scratch Pool . 168

17.16The Catalog Resource . 168

17.17The Messages Resource . 169

17.18The Console Resource . 170

17.19The Counter Resource . 171

17.20Example Director Configuration File . 172

18 Client/File daemon Configuration 175

18.1 The Client Resource . 175

18.2 The Director Resource . 177

18.3 The Message Resource . 178

18.4 Example Client Configuration File . 178

19 Storage Daemon Configuration 179

19.1 Storage Resource . 179

19.2 Director Resource . 181

19.3 Device Resource . 181

19.4 Edit Codes for Mount and Unmount Directives . 189

19.5 Devices that require a mount (DVD) . 189

20 Autochanger Resource 191

20.1 Capabilities . 192

20.2 Messages Resource . 192

20.3 Sample Storage Daemon Configuration File . 192

21 Messages Resource 195

22 Console Configuration 199

22.1 General . 199

22.2 The Director Resource . 199

22.3 The ConsoleFont Resource . 200

CONTENTS ix

22.4 The Console Resource . 200

22.5 Console Commands . 202

22.6 Sample Console Configuration File . 202

23 Monitor Configuration 203

23.1 The Monitor Resource . 203

23.2 The Director Resource . 203

23.3 The Client Resource . 204

23.4 The Storage Resource . 204

23.5 Tray Monitor Security . 205

23.6 Sample Tray Monitor configuration . 205

23.6.1 Sample File daemon’s Director record. 206

23.6.2 Sample Storage daemon’s Director record. 206

23.6.3 Sample Director’s Console record. 206

24 The Restore Command 207

24.1 General . 207

24.2 The Restore Command . 207

24.2.1 Restore a pruned job using a pattern . 212

24.3 Selecting Files by Filename . 212

24.4 Replace Options . 213

24.5 Command Line Arguments . 214

24.6 Using File Relocation . 215

24.6.1 Introduction . 215

24.6.2 RegexWhere Format . 215

24.7 Restoring Directory Attributes . 216

24.8 Restoring on Windows . 216

24.9 Restoring Files Can Be Slow . 217

24.10Problems Restoring Files . 217

24.11Restore Errors . 218

24.12Example Restore Job Resource . 218

24.13File Selection Commands . 218

24.14Restoring When Things Go Wrong . 220

25 Automatic Volume Recycling 225

x CONTENTS

25.1 Automatic Pruning . 226

25.2 Pruning Directives . 226

25.3 Recycling Algorithm . 228

25.4 Recycle Status . 229

25.5 Making Bacula Use a Single Tape . 230

25.6 Daily, Weekly, Monthly Tape Usage Example . 230

25.7 Automatic Pruning and Recycling Example . 232

25.8 Manually Recycling Volumes . 233

26 Basic Volume Management 235

26.1 Key Concepts and Resource Records . 235

26.1.1 Pool Options to Limit the Volume Usage . 236

26.1.2 Automatic Volume Labeling . 237

26.1.3 Restricting the Number of Volumes and Recycling . 237

26.2 Concurrent Disk Jobs . 238

26.3 An Example . 239

26.4 Backing up to Multiple Disks . 241

26.5 Considerations for Multiple Clients . 242

27 Automated Disk Backup 247

27.1 The Problem . 247

27.2 The Solution . 247

27.3 Overall Design . 248

27.3.1 Full Pool . 248

27.3.2 Differential Pool . 249

27.3.3 Incremental Pool . 249

27.4 The Actual Conf Files . 249

28 Migration and Copy 253

28.1 Migration and Copy Job Resource Directives . 254

28.2 Migration Pool Resource Directives . 256

28.3 Important Migration Considerations . 256

28.4 Example Migration Jobs . 257

29 File Deduplication using Base Jobs 259

CONTENTS xi

30 Backup Strategies 261

30.1 Simple One Tape Backup . 261

30.1.1 Advantages . 261

30.1.2 Disadvantages . 261

30.1.3 Practical Details . 261

30.2 Manually Changing Tapes . 262

30.3 Daily Tape Rotation . 262

30.3.1 Advantages . 262

30.3.2 Disadvantages . 263

30.3.3 Practical Details . 263

31 Autochanger Support 267

31.1 Knowing What SCSI Devices You Have . 268

31.2 Example Scripts . 269

31.3 Slots . 269

31.4 Multiple Devices . 269

31.5 Device Configuration Records . 270

32 Autochanger Resource 273

32.1 An Example Configuration File . 274

32.2 A Multi-drive Example Configuration File . 274

32.3 Specifying Slots When Labeling . 275

32.4 Changing Cartridges . 276

32.5 Dealing with Multiple Magazines . 276

32.6 Simulating Barcodes in your Autochanger . 277

32.7 The Full Form of the Update Slots Command . 277

32.8 FreeBSD Issues . 278

32.9 Testing Autochanger and Adapting mtx-changer script . 278

32.10Using the Autochanger . 279

32.11Barcode Support . 280

32.12Use bconsole to display Autochanger content . 281

32.13Bacula Autochanger Interface . 281

33 Supported Autochangers 283

xii CONTENTS

34 Data Spooling 287

34.1 Data Spooling Directives . 287

34.2 !!! MAJOR WARNING !!! . 288

34.3 Other Points . 288

35 Using Bacula catalog to grab information 289

35.1 Job statistics . 289

36 ANSI and IBM Tape Labels 291

36.1 Director Pool Directive . 291

36.2 Storage Daemon Device Directives . 291

37 The Windows Version of Bacula 293

37.1 Win32 Installation . 293

37.2 Post Win32 Installation . 297

37.3 Uninstalling Bacula on Win32 . 297

37.4 Dealing with Win32 Problems . 297

37.5 Windows Compatibility Considerations . 299

37.6 Volume Shadow Copy Service . 300

37.7 VSS Problems . 301

37.8 Windows Firewalls . 302

37.9 Windows Port Usage . 302

37.10Windows Disaster Recovery . 302

37.11Windows Restore Problems . 302

37.12Windows Ownership and Permissions Problems . 303

37.13Manually resetting the Permissions . 303

37.14Backing Up the WinNT/XP/2K System State . 305

37.15Considerations for Filename Specifications . 306

37.16Win32 Specific File daemon Command Line . 306

37.17Shutting down Windows Systems . 307

38 Disaster Recovery Using Bacula 309

38.1 General . 309

38.2 Important Considerations . 309

38.3 Steps to Take Before Disaster Strikes . 309

CONTENTS xiii

38.4 Bare Metal Recovery on Linux with a Rescue CD . 310

38.5 Requirements . 310

38.6 Restoring a Client System . 310

38.7 Boot with your Rescue CDROM . 311

38.8 Restoring a Server . 313

38.9 Linux Problems or Bugs . 314

38.10Bare Metal Recovery using a LiveCD . 314

38.11FreeBSD Bare Metal Recovery . 315

38.12Solaris Bare Metal Recovery . 316

38.13Preparing Solaris Before a Disaster . 316

38.14Bugs and Other Considerations . 317

38.15Disaster Recovery of Win32 Systems . 317

38.16Ownership and Permissions on Win32 Systems . 317

38.17Alternate Disaster Recovery Suggestion for Win32 Systems 318

38.18Restoring to a Running System . 318

38.19Additional Resources . 319

39 Bacula TLS – Communications Encryption 321

39.1 TLS Configuration Directives . 321

39.2 Creating a Self-signed Certificate . 322

39.3 Getting a CA Signed Certificate . 323

39.4 Example TLS Configuration Files . 323

40 Data Encryption 327

40.1 Building Bacula with Encryption Support . 328

40.2 Encryption Technical Details . 328

40.3 Decrypting with a Master Key . 328

40.4 Generating Private/Public Encryption Keys . 329

40.5 Example Data Encryption Configuration . 329

41 Using Bacula to Improve Computer Security 331

41.1 The Details . 331

41.2 Running the Verify . 332

41.3 What To Do When Differences Are Found . 333

41.4 A Verify Configuration Example . 334

xiv CONTENTS

42 Installing and Configuring MySQL 337

42.1 Installing and Configuring MySQL – Phase I . 337

42.2 Installing and Configuring MySQL – Phase II . 338

42.3 Re-initializing the Catalog Database . 339

42.4 Linking Bacula with MySQL . 339

42.5 Installing MySQL from RPMs . 340

42.6 Upgrading MySQL . 340

43 Installing and Configuring PostgreSQL 341

43.1 Installing PostgreSQL . 341

43.2 Configuring PostgreSQL . 342

43.3 Re-initializing the Catalog Database . 344

43.4 Installing PostgreSQL from RPMs . 344

43.5 Converting from MySQL to PostgreSQL . 345

43.6 Upgrading PostgreSQL . 346

43.7 Tuning PostgreSQL . 347

43.8 Credits . 347

44 Installing and Configuring SQLite 349

44.1 Installing and Configuring SQLite – Phase I . 349

44.2 Installing and Configuring SQLite – Phase II . 350

44.3 Linking Bacula with SQLite . 350

44.4 Testing SQLite . 350

44.5 Re-initializing the Catalog Database . 351

45 Catalog Maintenance 353

45.1 Setting Retention Periods . 353

45.2 Compacting Your MySQL Database . 354

45.3 Repairing Your MySQL Database . 355

45.4 MySQL Table is Full . 355

45.5 MySQL Server Has Gone Away . 356

45.6 MySQL Temporary Tables . 356

45.7 Repairing Your PostgreSQL Database . 356

45.8 Database Performance Issues . 356

45.9 Performance Issues Indexes . 357

CONTENTS xv

45.9.1 PostgreSQL Indexes . 357

45.9.2 MySQL Indexes . 357

45.9.3 SQLite Indexes . 358

45.10Compacting Your PostgreSQL Database . 358

45.11Compacting Your SQLite Database . 359

45.12Migrating from SQLite to MySQL or PostgreSQL . 359

45.13Backing Up Your Bacula Database . 359

45.14Security considerations . 360

45.15Backing Up Third Party Databases . 361

45.16Database Size . 361

46 Bacula Security Issues 363

46.1 Backward Compatibility . 364

46.2 Configuring and Testing TCP Wrappers . 364

46.3 Running as non-root . 366

47 The Bootstrap File 367

47.1 Bootstrap File Format . 367

47.2 Automatic Generation of Bootstrap Files . 370

47.3 Bootstrap for bscan . 371

47.4 A Final Bootstrap Example . 371

48 Bacula Copyright, Trademark, and Licenses 373

48.1 FDL . 373

48.2 GPL . 373

48.3 LGPL . 373

48.4 Public Domain . 373

48.5 Trademark . 374

48.6 Fiduciary License Agreement . 374

48.7 Disclaimer . 374

49 GNU Free Documentation License 375

49.1 Table of Contents . 381

49.2 GNU GENERAL PUBLIC LICENSE . 381

49.3 Preamble . 381

xvi CONTENTS

49.4 TERMS AND CONDITIONS . 382

49.5 How to Apply These Terms to Your New Programs . 385

49.6 Table of Contents . 386

49.7 GNU LESSER GENERAL PUBLIC LICENSE . 386

49.8 Preamble . 386

49.9 TERMS AND CONDITIONS . 387

49.10How to Apply These Terms to Your New Libraries . 392

50 Thanks 393

50.1 Bacula Bugs . 395

Chapter 1

What is Bacula?

Bacula is a set of computer programs that permits the system administrator to manage backup, recovery,
and verification of computer data across a network of computers of different kinds. Bacula can also run
entirely upon a single computer and can backup to various types of media, including tape and disk.

In technical terms, it is a network Client/Server based backup program. Bacula is relatively easy to use and
efficient, while offering many advanced storage management features that make it easy to find and recover
lost or damaged files. Due to its modular design, Bacula is scalable from small single computer systems to
systems consisting of hundreds of computers located over a large network.

1.1 Who Needs Bacula?

If you are currently using a program such as tar, dump, or bru to backup your computer data, and you would
like a network solution, more flexibility, or catalog services, Bacula will most likely provide the additional
features you want. However, if you are new to Unix systems or do not have offsetting experience with a
sophisticated backup package, the Bacula project does not recommend using Bacula as it is much more
difficult to setup and use than tar or dump.

If you want Bacula to behave like the above mentioned simple programs and write over any tape that you
put in the drive, then you will find working with Bacula difficult. Bacula is designed to protect your data
following the rules you specify, and this means reusing a tape only as the last resort. It is possible to ”force”
Bacula to write over any tape in the drive, but it is easier and more efficient to use a simpler program for
that kind of operation.

If you would like a backup program that can write to multiple volumes (i.e. is not limited by your tape drive
capacity), Bacula can most likely fill your needs. In addition, quite a number of Bacula users report that
Bacula is simpler to setup and use than other equivalent programs.

If you are currently using a sophisticated commercial package such as Legato Networker. ARCserveIT,
Arkeia, or PerfectBackup+, you may be interested in Bacula, which provides many of the same features and
is free software available under the GNU Version 2 software license.

1.2 Bacula Components or Services

Bacula is made up of the following five major components or services: Director, Console, File, Storage, and
Monitor services.

1

2 Bacula Version 5.0.3

(thanks to Aristedes Ma-
niatis for this graphic and the one below)

Bacula Director

The Bacula Director service is the program that supervises all the backup, restore, verify and archive
operations. The system administrator uses the Bacula Director to schedule backups and to recover files.
For more details see the Director Services Daemon Design Document in the Bacula Developer’s Guide. The
Director runs as a daemon (or service) in the background.

Bacula Console

The Bacula Console service is the program that allows the administrator or user to communicate with the
Bacula Director Currently, the Bacula Console is available in three versions: text-based console interface, QT-
based interface, and a wxWidgets graphical interface. The first and simplest is to run the Console program
in a shell window (i.e. TTY interface). Most system administrators will find this completely adequate. The
second version is a GNOME GUI interface that is far from complete, but quite functional as it has most the
capabilities of the shell Console. The third version is a wxWidgets GUI with an interactive file restore. It also
has most of the capabilities of the shell console, allows command completion with tabulation, and gives you
instant help about the command you are typing. For more details see the Bacula Console Design Document.

Bacula Version 5.0.3 3

Bacula File

The Bacula File service (also known as the Client program) is the software program that is installed on
the machine to be backed up. It is specific to the operating system on which it runs and is responsible for
providing the file attributes and data when requested by the Director. The File services are also responsible
for the file system dependent part of restoring the file attributes and data during a recovery operation. For
more details see the File Services Daemon Design Document in the Bacula Developer’s Guide. This program
runs as a daemon on the machine to be backed up. In addition to Unix/Linux File daemons, there is a
Windows File daemon (normally distributed in binary format). The Windows File daemon runs on current
Windows versions (NT, 2000, XP, 2003, and possibly Me and 98).

Bacula Storage

The Bacula Storage services consist of the software programs that perform the storage and recovery of the
file attributes and data to the physical backup media or volumes. In other words, the Storage daemon is
responsible for reading and writing your tapes (or other storage media, e.g. files). For more details see the
Storage Services Daemon Design Document in the Bacula Developer’s Guide. The Storage services runs as
a daemon on the machine that has the backup device (usually a tape drive).

Catalog

The Catalog services are comprised of the software programs responsible for maintaining the file indexes
and volume databases for all files backed up. The Catalog services permit the system administrator or user
to quickly locate and restore any desired file. The Catalog services sets Bacula apart from simple backup
programs like tar and bru, because the catalog maintains a record of all Volumes used, all Jobs run, and
all Files saved, permitting efficient restoration and Volume management. Bacula currently supports three
different databases, MySQL, PostgreSQL, and SQLite, one of which must be chosen when building Bacula.

The three SQL databases currently supported (MySQL, PostgreSQL or SQLite) provide quite a number
of features, including rapid indexing, arbitrary queries, and security. Although the Bacula project plans
to support other major SQL databases, the current Bacula implementation interfaces only to MySQL,
PostgreSQL and SQLite. For the technical and porting details see the Catalog Services Design Document
in the developer’s documented.

The packages for MySQL and PostgreSQL are available for several operating systems. Alternatively, in-
stalling from the source is quite easy, see the Installing and Configuring MySQL chapter of this doc-
ument for the details. For more information on MySQL, please see: www.mysql.com. Or see the
Installing and Configuring PostgreSQL chapter of this document for the details. For more information
on PostgreSQL, please see: www.postgresql.org.

Configuring and building SQLite is even easier. For the details of configuring SQLite, please see the
Installing and Configuring SQLite chapter of this document.

Bacula Monitor

A Bacula Monitor service is the program that allows the administrator or user to watch current status of
Bacula Directors, Bacula File Daemons and Bacula Storage Daemons. Currently, only a GTK+ version
is available, which works with GNOME, KDE, or any window manager that supports the FreeDesktop.org
system tray standard.

To perform a successful save or restore, the following four daemons must be configured and running: the
Director daemon, the File daemon, the Storage daemon, and the Catalog service (MySQL, PostgreSQL or
SQLite).

http://www.mysql.com
http://www.postgresql.org

4 Bacula Version 5.0.3

1.3 Bacula Configuration

In order for Bacula to understand your system, what clients you want backed up and how, you must create
a number of configuration files containing resources (or objects). The following presents an overall picture
of this:

1.4 Conventions Used in this Document

Bacula is in a state of evolution, and as a consequence, this manual will not always agree with the code. If an
item in this manual is preceded by an asterisk (*), it indicates that the particular feature is not implemented.
If it is preceded by a plus sign (+), it indicates that the feature may be partially implemented.

If you are reading this manual as supplied in a released version of the software, the above paragraph holds
true. If you are reading the online version of the manual, www.bacula.org, please bear in mind that this
version describes the current version in development (in the CVS) that may contain features not in the
released version. Just the same, it generally lags behind the code a bit.

http://www.bacula.org

Bacula Version 5.0.3 5

1.5 Quick Start

To get Bacula up and running quickly, the author recommends that you first scan the Terminol-
ogy section below, then quickly review the next chapter entitled The Current State of Bacula, then the
Getting Started with Bacula, which will give you a quick overview of getting Bacula running. After which,
you should proceed to the chapter on Installing Bacula, then How to Configure Bacula, and finally the chap-
ter on Running Bacula.

1.6 Terminology

Administrator The person or persons responsible for administrating the Bacula system.

Backup The term Backup refers to a Bacula Job that saves files.

Bootstrap File The bootstrap file is an ASCII file containing a compact form of commands that allow
Bacula or the stand-alone file extraction utility (bextract) to restore the contents of one or more
Volumes, for example, the current state of a system just backed up. With a bootstrap file, Bacula can
restore your system without a Catalog. You can create a bootstrap file from a Catalog to extract any
file or files you wish.

Catalog The Catalog is used to store summary information about the Jobs, Clients, and Files that were
backed up and on what Volume or Volumes. The information saved in the Catalog permits the admin-
istrator or user to determine what jobs were run, their status as well as the important characteristics
of each file that was backed up, and most importantly, it permits you to choose what files to restore.
The Catalog is an online resource, but does not contain the data for the files backed up. Most of the
information stored in the catalog is also stored on the backup volumes (i.e. tapes). Of course, the
tapes will also have a copy of the file data in addition to the File Attributes (see below).

The catalog feature is one part of Bacula that distinguishes it from simple backup and archive programs
such as dump and tar.

Client In Bacula’s terminology, the word Client refers to the machine being backed up, and it is synonymous
with the File services or File daemon, and quite often, it is referred to it as the FD. A Client is defined
in a configuration file resource.

Console The program that interfaces to the Director allowing the user or system administrator to control
Bacula.

Daemon Unix terminology for a program that is always present in the background to carry out a designated
task. On Windows systems, as well as some Unix systems, daemons are called Services.

Directive The term directive is used to refer to a statement or a record within a Resource in a configuration
file that defines one specific setting. For example, theName directive defines the name of the Resource.

Director The main Bacula server daemon that schedules and directs all Bacula operations. Occasionally,
the project refers to the Director as DIR.

Differential A backup that includes all files changed since the last Full save started. Note, other backup
programs may define this differently.

File Attributes The File Attributes are all the information necessary about a file to identify it and all its
properties such as size, creation date, modification date, permissions, etc. Normally, the attributes are
handled entirely by Bacula so that the user never needs to be concerned about them. The attributes
do not include the file’s data.

File Daemon The daemon running on the client computer to be backed up. This is also referred to as the
File services, and sometimes as the Client services or the FD.

FileSet A FileSet is a Resource contained in a configuration file that defines the files to be backed up.
It consists of a list of included files or directories, a list of excluded files, and how the file is to be
stored (compression, encryption, signatures). For more details, see the FileSet Resource definition in
the Director chapter of this document.

6 Bacula Version 5.0.3

Incremental A backup that includes all files changed since the last Full, Differential, or Incremental backup
started. It is normally specified on the Level directive within the Job resource definition, or in a
Schedule resource.

Job A Bacula Job is a configuration resource that defines the work that Bacula must perform to backup
or restore a particular Client. It consists of the Type (backup, restore, verify, etc), the Level (full,
incremental,...), the FileSet, and Storage the files are to be backed up (Storage device, Media Pool).
For more details, see the Job Resource definition in the Director chapter of this document.

Monitor The program that interfaces to all the daemons allowing the user or system administrator to
monitor Bacula status.

Resource A resource is a part of a configuration file that defines a specific unit of information that is
available to Bacula. It consists of several directives (individual configuration statements). For example,
the Job resource defines all the properties of a specific Job: name, schedule, Volume pool, backup type,
backup level, ...

Restore A restore is a configuration resource that describes the operation of recovering a file from backup
media. It is the inverse of a save, except that in most cases, a restore will normally have a small set
of files to restore, while normally a Save backs up all the files on the system. Of course, after a disk
crash, Bacula can be called upon to do a full Restore of all files that were on the system.

Schedule A Schedule is a configuration resource that defines when the Bacula Job will be scheduled for
execution. To use the Schedule, the Job resource will refer to the name of the Schedule. For more
details, see the Schedule Resource definition in the Director chapter of this document.

Service This is a program that remains permanently in memory awaiting instructions. In Unix environ-
ments, services are also known as daemons.

Storage Coordinates The information returned from the Storage Services that uniquely locates a file
on a backup medium. It consists of two parts: one part pertains to each file saved, and the other
part pertains to the whole Job. Normally, this information is saved in the Catalog so that the user
doesn’t need specific knowledge of the Storage Coordinates. The Storage Coordinates include the File
Attributes (see above) plus the unique location of the information on the backup Volume.

Storage Daemon The Storage daemon, sometimes referred to as the SD, is the code that writes the
attributes and data to a storage Volume (usually a tape or disk).

Session Normally refers to the internal conversation between the File daemon and the Storage daemon.
The File daemon opens a session with the Storage daemon to save a FileSet or to restore it. A session
has a one-to-one correspondence to a Bacula Job (see above).

Verify A verify is a job that compares the current file attributes to the attributes that have previously been
stored in the Bacula Catalog. This feature can be used for detecting changes to critical system files
similar to what a file integrity checker like Tripwire does. One of the major advantages of using Bacula
to do this is that on the machine you want protected such as a server, you can run just the File daemon,
and the Director, Storage daemon, and Catalog reside on a different machine. As a consequence, if
your server is ever compromised, it is unlikely that your verification database will be tampered with.

Verify can also be used to check that the most recent Job data written to a Volume agrees with what
is stored in the Catalog (i.e. it compares the file attributes), *or it can check the Volume contents
against the original files on disk.

*Archive An Archive operation is done after a Save, and it consists of removing the Volumes on which
data is saved from active use. These Volumes are marked as Archived, and may no longer be used to
save files. All the files contained on an Archived Volume are removed from the Catalog. NOT YET
IMPLEMENTED.

Retention Period There are various kinds of retention periods that Bacula recognizes. The most important
are the File Retention Period, Job Retention Period, and the Volume Retention Period. Each of
these retention periods applies to the time that specific records will be kept in the Catalog database.
This should not be confused with the time that the data saved to a Volume is valid.

The File Retention Period determines the time that File records are kept in the catalog database. This
period is important for two reasons: the first is that as long as File records remain in the database,
you can ”browse” the database with a console program and restore any individual file. Once the File

Bacula Version 5.0.3 7

records are removed or pruned from the database, the individual files of a backup job can no longer be
”browsed”. The second reason for carefully choosing the File Retention Period is because the volume
of the database File records use the most storage space in the database. As a consequence, you must
ensure that regular ”pruning” of the database file records is done to keep your database from growing
too large. (See the Console prune command for more details on this subject).

The Job Retention Period is the length of time that Job records will be kept in the database. Note,
all the File records are tied to the Job that saved those files. The File records can be purged leaving
the Job records. In this case, information will be available about the jobs that ran, but not the details
of the files that were backed up. Normally, when a Job record is purged, all its File records will also
be purged.

The Volume Retention Period is the minimum of time that a Volume will be kept before it is reused.
Bacula will normally never overwrite a Volume that contains the only backup copy of a file. Under
ideal conditions, the Catalog would retain entries for all files backed up for all current Volumes. Once
a Volume is overwritten, the files that were backed up on that Volume are automatically removed
from the Catalog. However, if there is a very large pool of Volumes or a Volume is never overwritten,
the Catalog database may become enormous. To keep the Catalog to a manageable size, the backup
information should be removed from the Catalog after the defined File Retention Period. Bacula
provides the mechanisms for the catalog to be automatically pruned according to the retention periods
defined.

Scan A Scan operation causes the contents of a Volume or a series of Volumes to be scanned. These
Volumes with the information on which files they contain are restored to the Bacula Catalog. Once
the information is restored to the Catalog, the files contained on those Volumes may be easily restored.
This function is particularly useful if certain Volumes or Jobs have exceeded their retention period and
have been pruned or purged from the Catalog. Scanning data from Volumes into the Catalog is done
by using the bscan program. See the bscan section of the Bacula Utilities Chapter of this manual for
more details.

Volume A Volume is an archive unit, normally a tape or a named disk file where Bacula stores the data
from one or more backup jobs. All Bacula Volumes have a software label written to the Volume by
Bacula so that it identifies what Volume it is really reading. (Normally there should be no confusion
with disk files, but with tapes, it is easy to mount the wrong one.)

1.7 What Bacula is Not

Bacula is a backup, restore and verification program and is not a complete disaster recovery system in
itself, but it can be a key part of one if you plan carefully and follow the instructions included in the
Disaster Recovery Chapter of this manual.

With proper planning, as mentioned in the Disaster Recovery chapter, Bacula can be a central component
of your disaster recovery system. For example, if you have created an emergency boot disk, and/or a Bacula
Rescue disk to save the current partitioning information of your hard disk, and maintain a complete Bacula
backup, it is possible to completely recover your system from ”bare metal” that is starting from an empty
disk.

If you have used the WriteBootstrap record in your job or some other means to save a valid bootstrap file,
you will be able to use it to extract the necessary files (without using the catalog or manually searching for
the files to restore).

1.8 Interactions Between the Bacula Services

The following block diagram shows the typical interactions between the Bacula Services for a backup job.
Each block represents in general a separate process (normally a daemon). In general, the Director oversees
the flow of information. It also maintains the Catalog.

8 Bacula Version 5.0.3

Chapter 2

Release Version 5.0.2 and 5.0.3

There are no new features in version 5.0.2 and 5.0.3. This version simply fixes a number of bugs found in
version 5.0.1 and 5.0.2 during the onging development process.

9

10 Bacula Version 5.0.3

Chapter 3

New Features in 5.0.1

This chapter presents the new features that are in the released Bacula version 5.0.1. This version mainly
fixes a number of bugs found in version 5.0.0 during the onging development process.

3.1 Truncate Volume after Purge

The Pool directive ActionOnPurge=Truncate instructs Bacula to truncate the volume when it is purged
with the new command purge volume action. It is useful to prevent disk based volumes from consuming
too much space.

Pool {

Name = Default

Action On Purge = Truncate

...

}

As usual you can also set this property with the update volume command

*update volume=xxx ActionOnPurge=Truncate

*update volume=xxx actiononpurge=None

To ask Bacula to truncate your Purged volumes, you need to use the following command in interactive mode
or in a RunScript as shown after:

*purge volume action=truncate storage=File allpools

or by default, action=all

*purge volume action storage=File pool=Default

This is possible to specify the volume name, the media type, the pool, the storage, etc. . . (see help purge)
Be sure that your storage device is idle when you decide to run this command.

Job {

Name = CatalogBackup

...

RunScript {

RunsWhen=After

RunsOnClient=No

Console = "purge volume action=all allpools storage=File"

}

}

11

12 Bacula Version 5.0.3

Important note: This feature doesn’t work as expected in version 5.0.0. Please do not use it before version
5.0.1.

3.2 Allow Higher Duplicates

This directive did not work correctly and has been depreciated (disabled) in version 5.0.1. Please remove it
from your bacula-dir.conf file as it will be removed in a future rlease.

3.3 Cancel Lower Level Duplicates

This directive was added in Bacula version 5.0.1. It compares the level of a new backup job to old jobs of
the same name, if any, and will kill the job which has a lower level than the other one. If the levels are the
same (i.e. both are Full backups), then nothing is done and the other Cancel XXX Duplicate directives will
be examined.

Chapter 4

New Features in 5.0.0

4.1 Maximum Concurrent Jobs for Devices

Maximum Concurrent Jobs is a new Device directive in the Storage Daemon configuration permits
setting the maximum number of Jobs that can run concurrently on a specified Device. Using this directive,
it is possible to have different Jobs using multiple drives, because when the Maximum Concurrent Jobs limit
is reached, the Storage Daemon will start new Jobs on any other available compatible drive. This facilitates
writing to multiple drives with multiple Jobs that all use the same Pool.

This project was funded by Bacula Systems.

4.2 Restore from Multiple Storage Daemons

Previously, you were able to restore from multiple devices in a single Storage Daemon. Now, Bacula is able
to restore from multiple Storage Daemons. For example, if your full backup runs on a Storage Daemon
with an autochanger, and your incremental jobs use another Storage Daemon with lots of disks, Bacula will
switch automatically from one Storage Daemon to an other within the same Restore job.

You must upgrade your File Daemon to version 3.1.3 or greater to use this feature.

This project was funded by Bacula Systems with the help of Equiinet.

4.3 File Deduplication using Base Jobs

A base job is sort of like a Full save except that you will want the FileSet to contain only files that are
unlikely to change in the future (i.e. a snapshot of most of your system after installing it). After the base
job has been run, when you are doing a Full save, you specify one or more Base jobs to be used. All files that
have been backed up in the Base job/jobs but not modified will then be excluded from the backup. During
a restore, the Base jobs will be automatically pulled in where necessary.

This is something none of the competition does, as far as we know (except perhaps BackupPC, which is a
Perl program that saves to disk only). It is big win for the user, it makes Bacula stand out as offering a
unique optimization that immediately saves time and money. Basically, imagine that you have 100 nearly
identical Windows or Linux machine containing the OS and user files. Now for the OS part, a Base job will
be backed up once, and rather than making 100 copies of the OS, there will be only one. If one or more of
the systems have some files updated, no problem, they will be automatically restored.

See the Base Job Chapter for more information.

13

14 Bacula Version 5.0.3

This project was funded by Bacula Systems.

4.4 AllowCompression = <yes|no>

This new directive may be added to Storage resource within the Director’s configuration to allow users to
selectively disable the client compression for any job which writes to this storage resource.

For example:

Storage {

Name = UltriumTape

Address = ultrium-tape

Password = storage_password # Password for Storage Daemon

Device = Ultrium

Media Type = LTO 3

AllowCompression = No # Tape drive has hardware compression

}

The above example would cause any jobs running with the UltriumTape storage resource to run without
compression from the client file daemons. This effectively overrides any compression settings defined at the
FileSet level.

This feature is probably most useful if you have a tape drive which supports hardware compression. By
setting the AllowCompression = No directive for your tape drive storage resource, you can avoid additional
load on the file daemon and possibly speed up tape backups.

This project was funded by Collaborative Fusion, Inc.

4.5 Accurate Fileset Options

In previous versions, the accurate code used the file creation and modification times to determine if a file
was modified or not. Now you can specify which attributes to use (time, size, checksum, permission, owner,
group, . . .), similar to the Verify options.

FileSet {

Name = Full

Include = {

Options {

Accurate = mcs

Verify = pin5

}

File = /

}

}

i compare the inodes

p compare the permission bits

n compare the number of links

u compare the user id

g compare the group id

s compare the size

Bacula Version 5.0.3 15

a compare the access time

m compare the modification time (st mtime)

c compare the change time (st ctime)

d report file size decreases

5 compare the MD5 signature

1 compare the SHA1 signature

Important note: If you decide to use checksum in Accurate jobs, the File Daemon will have to read all
files even if they normally would not be saved. This increases the I/O load, but also the accuracy of the
deduplication. By default, Bacula will check modification/creation time and size.

This project was funded by Bacula Systems.

4.6 Tab-completion for Bconsole

If you build bconsole with readline support, you will be able to use the new auto-completion mode. This
mode supports all commands, gives help inside command, and lists resources when required. It works also
in the restore mode.

To use this feature, you should have readline development package loaded on your system, and use the
following option in configure.

./configure --with-readline=/usr/include/readline --disable-conio ...

The new bconsole won’t be able to tab-complete with older directors.

This project was funded by Bacula Systems.

4.7 Pool File and Job retention

We added two new Pool directives, FileRetention and JobRetention, that take precedence over Client
directives of the same name. It allows you to control the Catalog pruning algorithm Pool by Pool. For
example, you can decide to increase Retention times for Archive or OffSite Pool.

4.8 Read-only File Daemon using capabilities

This feature implements support of keeping ReadAll capabilities after UID/GID switch, this allows FD to
keep root read but drop write permission.

It introduces new bacula-fd option (-k) specifying thatReadAll capabilities should be kept after UID/GID
switch.

root@localhost:~# bacula-fd -k -u nobody -g nobody

The code for this feature was contributed by our friends at AltLinux.

16 Bacula Version 5.0.3

4.9 Bvfs API

To help developers of restore GUI interfaces, we have added new dot commands that permit browsing the
catalog in a very simple way.

• .bvfs update [jobid=x,y,z] This command is required to update the Bvfs cache in the catalog. You
need to run it before any access to the Bvfs layer.

• .bvfs lsdirs jobid=x,y,z path=/path | pathid=101 This command will list all directories in the
specified path or pathid. Using pathid avoids problems with character encoding of path/filenames.

• .bvfs lsfiles jobid=x,y,z path=/path | pathid=101 This command will list all files in the spec-
ified path or pathid. Using pathid avoids problems with character encoding.

You can use limit=xxx and offset=yyy to limit the amount of data that will be displayed.

* .bvfs_update jobid=1,2

* .bvfs_update

* .bvfs_lsdir path=/ jobid=1,2

This project was funded by Bacula Systems.

4.10 Testing your Tape Drive

To determine the best configuration of your tape drive, you can run the new speed command available in
the btape program.

This command can have the following arguments:

file size=n Specify the Maximum File Size for this test (between 1 and 5GB). This counter is in GB.

nb file=n Specify the number of file to be written. The amount of data should be greater than your memory
(file size ∗ nb file).

skip zero This flag permits to skip tests with constant data.

skip random This flag permits to skip tests with random data.

skip raw This flag permits to skip tests with raw access.

skip block This flag permits to skip tests with Bacula block access.

*speed file_size=3 skip_raw

btape.c:1078 Test with zero data and bacula block structure.

btape.c:956 Begin writing 3 files of 3.221 GB with blocks of 129024 bytes.

++

btape.c:604 Wrote 1 EOF to "Drive-0" (/dev/nst0)

btape.c:406 Volume bytes=3.221 GB. Write rate = 44.128 MB/s

...

btape.c:383 Total Volume bytes=9.664 GB. Total Write rate = 43.531 MB/s

btape.c:1090 Test with random data, should give the minimum throughput.

btape.c:956 Begin writing 3 files of 3.221 GB with blocks of 129024 bytes.

+++

btape.c:604 Wrote 1 EOF to "Drive-0" (/dev/nst0)

btape.c:406 Volume bytes=3.221 GB. Write rate = 7.271 MB/s

Bacula Version 5.0.3 17

+++

...

btape.c:383 Total Volume bytes=9.664 GB. Total Write rate = 7.365 MB/s

When using compression, the random test will give your the minimum throughput of your drive . The test
using constant string will give you the maximum speed of your hardware chain. (cpu, memory, scsi card,
cable, drive, tape).

You can change the block size in the Storage Daemon configuration file.

4.11 New Block Checksum Device Directive

You may now turn off the Block Checksum (CRC32) code that Bacula uses when writing blocks to a Volume.
This is done by adding:

Block Checksum = no

doing so can reduce the Storage daemon CPU usage slightly. It will also permit Bacula to read a Volume
that has corrupted data.

The default is yes – i.e. the checksum is computed on write and checked on read.

We do not recommend to turn this off particularly on older tape drives or for disk Volumes where doing so
may allow corrupted data to go undetected.

4.12 New Bat Features

Those new features were funded by Bacula Systems.

4.12.1 Media List View

By clicking on “Media”, you can see the list of all your volumes. You will be able to filter by Pool, Media
Type, Location,. . . And sort the result directly in the table. The old “Media” view is now known as “Pool”.

4.12.2 Media Information View

By double-clicking on a volume (on the Media list, in the Autochanger content or in the Job information
panel), you can access a detailed overview of your Volume. (cf 4.1.)

4.12.3 Job Information View

By double-clicking on a Job record (on the Job run list or in the Media information panel), you can access
a detailed overview of your Job. (cf 4.2.)

18 Bacula Version 5.0.3

Figure 4.1: Media information

Bacula Version 5.0.3 19

Figure 4.2: Job information

4.12.4 Autochanger Content View

By double-clicking on a Storage record (on the Storage list panel), you can access a detailed overview of your
Autochanger. (cf 4.2.)

Figure 4.3: Autochanger content

To use this feature, you need to use the latest mtx-changer script version. (With new listall and transfer

commands)

20 Bacula Version 5.0.3

4.13 Bat on Windows

We have ported bat to Windows and it is now installed by default when the installer is run. It works quite
well on Win32, but has not had a lot of testing there, so your feedback would be welcome. Unfortunately,
eventhough it is installed by default, it does not yet work on 64 bit Windows operating systems.

4.14 New Win32 Installer

The Win32 installer has been modified in several very important ways.

• You must deinstall any current version of the Win32 File daemon before upgrading to the new one. If
you forget to do so, the new installation will fail. To correct this failure, you must manually shutdown
and deinstall the old File daemon.

• All files (other than menu links) are installed in c:/Program Files/Bacula.

• The installer no longer sets this file to require administrator privileges by default. If you want to do
so, please do it manually using the cacls program. For example:

cacls "C:\Program Files\Bacula" /T /G SYSTEM:F Administrators:F

• The server daemons (Director and Storage daemon) are no longer included in the Windows installer.
If you want the Windows servers, you will either need to build them yourself (note they have not been
ported to 64 bits), or you can contact Bacula Systems about this.

4.15 Win64 Installer

We have corrected a number of problems that required manual editing of the conf files. In most cases, it
should now install and work. bat is by default installed in c:/Program Files/Bacula/bin32 rather than
c:/Program Files/Bacula as is the case with the 32 bit Windows installer.

4.16 Linux Bare Metal Recovery USB Key

We have made a number of significant improvements in the Bare Metal Recovery USB key. Please see the
README files it the rescue release for more details.

We are working on an equivalent USB key for Windows bare metal recovery, but it will take some time to
develop it (best estimate 3Q2010 or 4Q2010)

4.17 bconsole Timeout Option

You can now use the -u option of bconsole to set a timeout in seconds for commands. This is useful with
GUI programs that use bconsole to interface to the Director.

4.18 Important Changes

• You are now allowed to Migrate, Copy, and Virtual Full to read and write to the same Pool. The
Storage daemon ensures that you do not read and write to the same Volume.

Bacula Version 5.0.3 21

• The Device Poll Interval is now 5 minutes. (previously did not poll by default).

• Virtually all the features of mtx-changer have now been parameterized, which allows you to configure
mtx-changer without changing it. There is a new configuration file mtx-changer.conf that contains
variables that you can set to configure mtx-changer. This configuration file will not be overwritten
during upgrades. We encourage you to submit any changes that are made to mtx-changer and to
parameterize it all in mtx-changer.conf so that all configuration will be done by changing only mtx-
changer.conf.

• The new mtx-changer script has two new options, listall and transfer. Please configure them as
appropriate in mtx-changer.conf.

• To enhance security of the BackupCatalog job, we provide a new script (make catalog backup.pl)
that does not expose your catalog password. If you want to use the new script, you will need to
manually change the BackupCatalog Job definition.

• The bconsole help command now accepts an argument, which if provided produces information on
that command (ex: help run).

Truncate volume after purge

Note that the Truncate Volume after purge feature doesn’t work as expected in 5.0.0 version. Please, don’t
use it before version 5.0.1.

4.18.1 Custom Catalog queries

If you wish to add specialized commands that list the contents of the catalog, you can do so by adding them
to the query.sql file. This query.sql file is now empty by default. The file examples/sample-query.sql
has an a number of sample commands you might find useful.

4.18.2 Deprecated parts

The following items have been deprecated for a long time, and are now removed from the code.

• Gnome console

• Support for SQLite 2

4.19 Misc Changes

• Updated Nagios check bacula

• Updated man files

• Added OSX package generation script in platforms/darwin

• Added Spanish and Ukrainian Bacula translations

• Enable/disable command shows only Jobs that can change

• Added show disabled command to show disabled Jobs

• Many ACL improvements

• Added Level to FD status Job output

• Begin Ingres DB driver (not yet working)

22 Bacula Version 5.0.3

• Split RedHat spec files into bacula, bat, mtx, and docs

• Reorganized the manuals (fewer separate manuals)

• Added lock/unlock order protection in lock manager

• Allow 64 bit sizes for a number of variables

• Fixed several deadlocks or potential race conditions in the SD

Chapter 5

Released Version 3.0.3 and 3.0.3a

There are no new features in version 3.0.3. This version simply fixes a number of bugs found in version 3.0.2
during the onging development process.

23

24 Bacula Version 5.0.3

Chapter 6

New Features in Released Version
3.0.2

This chapter presents the new features added to the Released Bacula Version 3.0.2.

6.1 Full Restore from a Given JobId

This feature allows selecting a single JobId and having Bacula automatically select all the other jobs that
comprise a full backup up to and including the selected date (through JobId).

Assume we start with the following jobs:

+-------+--------------+---------------------+-------+----------+------------+

| jobid | client | starttime | level | jobfiles | jobbytes |

+-------+--------------+---------------------+-------+----------+------------

| 6 | localhost-fd | 2009-07-15 11:45:49 | I | 2 | 0 |

| 5 | localhost-fd | 2009-07-15 11:45:45 | I | 15 | 44143 |

| 3 | localhost-fd | 2009-07-15 11:45:38 | I | 1 | 10 |

| 1 | localhost-fd | 2009-07-15 11:45:30 | F | 1527 | 44143073 |

+-------+--------------+---------------------+-------+----------+------------+

Below is an example of this new feature (which is number 12 in the menu).

* restore

To select the JobIds, you have the following choices:

1: List last 20 Jobs run

2: List Jobs where a given File is saved

...

12: Select full restore to a specified Job date

13: Cancel

Select item: (1-13): 12

Enter JobId to get the state to restore: 5

Selecting jobs to build the Full state at 2009-07-15 11:45:45

You have selected the following JobIds: 1,3,5

Building directory tree for JobId(s) 1,3,5 ... +++++++++++++++++++

1,444 files inserted into the tree.

This project was funded by Bacula Systems.

25

26 Bacula Version 5.0.3

6.2 Source Address

A feature has been added which allows the administrator to specify the address from which the Director and
File daemons will establish connections. This may be used to simplify system configuration overhead when
working in complex networks utilizing multi-homing and policy-routing.

To accomplish this, two new configuration directives have been implemented:

FileDaemon {

FDSourceAddress=10.0.1.20 # Always initiate connections from this address

}

Director {

DirSourceAddress=10.0.1.10 # Always initiate connections from this address

}

Simply adding specific host routes on the OS would have an undesirable side-effect: any application trying
to contact the destination host would be forced to use the more specific route possibly diverting management
traffic onto a backup VLAN. Instead of adding host routes for each client connected to a multi-homed backup
server (for example where there are management and backup VLANs), one can use the new directives to
specify a specific source address at the application level.

Additionally, this allows the simplification and abstraction of firewall rules when dealing with a Hot-Standby
director or storage daemon configuration. The Hot-standby pair may share a CARP address, which connec-
tions must be sourced from, while system services listen and act from the unique interface addresses.

This project was funded by Collaborative Fusion, Inc.

6.3 Show volume availability when doing restore

When doing a restore the selection dialog ends by displaying this screen:

The job will require the following

Volume(s) Storage(s) SD Device(s)

===

*000741L3 LTO-4 LTO3

*000866L3 LTO-4 LTO3

*000765L3 LTO-4 LTO3

*000764L3 LTO-4 LTO3

*000756L3 LTO-4 LTO3

*001759L3 LTO-4 LTO3

*001763L3 LTO-4 LTO3

001762L3 LTO-4 LTO3

001767L3 LTO-4 LTO3

Volumes marked with ‘‘*’’ are online (in the autochanger).

This should help speed up large restores by minimizing the time spent waiting for the operator to discover
that he must change tapes in the library.

This project was funded by Bacula Systems.

6.4 Accurate estimate command

The estimate command can now use the accurate code to detect changes and give a better estimation.

Bacula Version 5.0.3 27

You can set the accurate behavior on the command line by using accurate=yes|no or use the Job setting
as default value.

* estimate listing accurate=yes level=incremental job=BackupJob

This project was funded by Bacula Systems.

28 Bacula Version 5.0.3

Chapter 7

New Features in 3.0.0

This chapter presents the new features added to the development 2.5.x versions to be released as Bacula
version 3.0.0 sometime in April 2009.

7.1 Accurate Backup

As with most other backup programs, by default Bacula decides what files to backup for Incremental and
Differental backup by comparing the change (st ctime) and modification (st mtime) times of the file to the
time the last backup completed. If one of those two times is later than the last backup time, then the file
will be backed up. This does not, however, permit tracking what files have been deleted and will miss any
file with an old time that may have been restored to or moved onto the client filesystem.

7.1.1 Accurate = <yes|no>

If the Accurate = <yes|no> directive is enabled (default no) in the Job resource, the job will be run as
an Accurate Job. For a Full backup, there is no difference, but for Differential and Incremental backups,
the Director will send a list of all previous files backed up, and the File daemon will use that list to determine
if any new files have been added or or moved and if any files have been deleted. This allows Bacula to make
an accurate backup of your system to that point in time so that if you do a restore, it will restore your
system exactly.

One note of caution about using Accurate backup is that it requires more resources (CPU and memory) on
both the Director and the Client machines to create the list of previous files backed up, to send that list to
the File daemon, for the File daemon to keep the list (possibly very big) in memory, and for the File daemon
to do comparisons between every file in the FileSet and the list. In particular, if your client has lots of files
(more than a few million), you will need lots of memory on the client machine.

Accurate must not be enabled when backing up with a plugin that is not specially designed to work with
Accurate. If you enable it, your restores will probably not work correctly.

This project was funded by Bacula Systems.

7.2 Copy Jobs

A new Copy job type ’C’ has been implemented. It is similar to the existing Migration feature with the
exception that the Job that is copied is left unchanged. This essentially creates two identical copies of the
same backup. However, the copy is treated as a copy rather than a backup job, and hence is not directly
available for restore. The restore command lists copy jobs and allows selection of copies by using jobid=

29

30 Bacula Version 5.0.3

option. If the keyword copies is present on the command line, Bacula will display the list of all copies for
selected jobs.

* restore copies

[...]

These JobIds have copies as follows:

+-------+------------------------------------+-----------+------------------+

| JobId | Job | CopyJobId | MediaType |

+-------+------------------------------------+-----------+------------------+

| 2 | CopyJobSave.2009-02-17_16.31.00.11 | 7 | DiskChangerMedia |

+-------+------------------------------------+-----------+------------------+

+-------+-------+----------+----------+---------------------+------------------+

| JobId | Level | JobFiles | JobBytes | StartTime | VolumeName |

+-------+-------+----------+----------+---------------------+------------------+

| 19 | F | 6274 | 76565018 | 2009-02-17 16:30:45 | ChangerVolume002 |

| 2 | I | 1 | 5 | 2009-02-17 16:30:51 | FileVolume001 |

+-------+-------+----------+----------+---------------------+------------------+

You have selected the following JobIds: 19,2

Building directory tree for JobId(s) 19,2 ... ++

5,611 files inserted into the tree.

...

The Copy Job runs without using the File daemon by copying the data from the old backup Volume to a
different Volume in a different Pool. See the Migration documentation for additional details. For copy Jobs
there is a new selection directive named PoolUncopiedJobs which selects all Jobs that were not already
copied to another Pool.

As with Migration, the Client, Volume, Job, or SQL query, are other possible ways of selecting the Jobs
to be copied. Selection types like SmallestVolume, OldestVolume, PoolOccupancy and PoolTime also work,
but are probably more suited for Migration Jobs.

If Bacula finds a Copy of a job record that is purged (deleted) from the catalog, it will promote the Copy
to a real backup job and will make it available for automatic restore. If more than one Copy is available, it
will promote the copy with the smallest JobId.

A nice solution which can be built with the new Copy feature is often called disk-to-disk-to-tape backup
(DTDTT). A sample config could look something like the one below:

Pool {

Name = FullBackupsVirtualPool

Pool Type = Backup

Purge Oldest Volume = Yes

Storage = vtl

NextPool = FullBackupsTapePool

}

Pool {

Name = FullBackupsTapePool

Pool Type = Backup

Recycle = Yes

AutoPrune = Yes

Volume Retention = 365 days

Storage = superloader

}

#

Fake fileset for copy jobs

#

Bacula Version 5.0.3 31

Fileset {

Name = None

Include {

Options {

signature = MD5

}

}

}

#

Fake client for copy jobs

#

Client {

Name = None

Address = localhost

Password = "NoNe"

Catalog = MyCatalog

}

#

Default template for a CopyDiskToTape Job

#

JobDefs {

Name = CopyDiskToTape

Type = Copy

Messages = StandardCopy

Client = None

FileSet = None

Selection Type = PoolUncopiedJobs

Maximum Concurrent Jobs = 10

SpoolData = No

Allow Duplicate Jobs = Yes

Cancel Queued Duplicates = No

Cancel Running Duplicates = No

Priority = 13

}

Schedule {

Name = DaySchedule7:00

Run = Level=Full daily at 7:00

}

Job {

Name = CopyDiskToTapeFullBackups

Enabled = Yes

Schedule = DaySchedule7:00

Pool = FullBackupsVirtualPool

JobDefs = CopyDiskToTape

}

The example above had 2 pool which are copied using the PoolUncopiedJobs selection criteria. Normal Full
backups go to the Virtual pool and are copied to the Tape pool the next morning.

The command list copies [jobid=x,y,z] lists copies for a given jobid.

*list copies

+-------+------------------------------------+-----------+------------------+

| JobId | Job | CopyJobId | MediaType |

+-------+------------------------------------+-----------+------------------+

32 Bacula Version 5.0.3

| 9 | CopyJobSave.2008-12-20_22.26.49.05 | 11 | DiskChangerMedia |

+-------+------------------------------------+-----------+------------------+

7.3 ACL Updates

The whole ACL code had been overhauled and in this version each platforms has different streams for each
type of acl available on such an platform. As ACLs between platforms tend to be not that portable (most
implement POSIX acls but some use an other draft or a completely different format) we currently only
allow certain platform specific ACL streams to be decoded and restored on the same platform that they
were created on. The old code allowed to restore ACL cross platform but the comments already mention
that not being to wise. For backward compatability the new code will accept the two old ACL streams and
handle those with the platform specific handler. But for all new backups it will save the ACLs using the
new streams.

Currently the following platforms support ACLs:

• AIX

• Darwin/OSX

• FreeBSD

• HPUX

• IRIX

• Linux

• Tru64

• Solaris

Currently we support the following ACL types (these ACL streams use a reserved part of the stream num-
bers):

• STREAM ACL AIX TEXT 1000 AIX specific string representation from acl get

• STREAM ACL DARWIN ACCESS ACL 1001 Darwin (OSX) specific acl t string representation
from acl to text (POSIX acl)

• STREAM ACL FREEBSD DEFAULT ACL 1002 FreeBSD specific acl t string representation
from acl to text (POSIX acl) for default acls.

• STREAM ACL FREEBSD ACCESS ACL 1003 FreeBSD specific acl t string representation
from acl to text (POSIX acl) for access acls.

• STREAM ACL HPUX ACL ENTRY 1004 HPUX specific acl entry string representation from
acltostr (POSIX acl)

• STREAM ACL IRIX DEFAULT ACL 1005 IRIX specific acl t string representation from
acl to text (POSIX acl) for default acls.

• STREAM ACL IRIX ACCESS ACL 1006 IRIX specific acl t string representation from
acl to text (POSIX acl) for access acls.

• STREAM ACL LINUX DEFAULT ACL 1007 Linux specific acl t string representation from
acl to text (POSIX acl) for default acls.

• STREAM ACL LINUX ACCESS ACL 1008 Linux specific acl t string representation from
acl to text (POSIX acl) for access acls.

Bacula Version 5.0.3 33

• STREAM ACL TRU64 DEFAULT ACL 1009 Tru64 specific acl t string representation from
acl to text (POSIX acl) for default acls.

• STREAM ACL TRU64 DEFAULT DIR ACL 1010 Tru64 specific acl t string representation
from acl to text (POSIX acl) for default acls.

• STREAM ACL TRU64 ACCESS ACL 1011 Tru64 specific acl t string representation from
acl to text (POSIX acl) for access acls.

• STREAM ACL SOLARIS ACLENT 1012 Solaris specific aclent t string representation from
acltotext or acl totext (POSIX acl)

• STREAM ACL SOLARIS ACE 1013 Solaris specific ace t string representation from from
acl totext (NFSv4 or ZFS acl)

In future versions we might support conversion functions from one type of acl into an other for types that
are either the same or easily convertable. For now the streams are seperate and restoring them on a platform
that doesn’t recognize them will give you a warning.

7.4 Extended Attributes

Something that was on the project list for some time is now implemented for platforms that support a
similar kind of interface. Its the support for backup and restore of so called extended attributes. As
extended attributes are so platform specific these attributes are saved in seperate streams for each platform.
Restores of the extended attributes can only be performed on the same platform the backup was done. There
is support for all types of extended attributes, but restoring from one type of filesystem onto an other type of
filesystem on the same platform may lead to supprises. As extended attributes can contain any type of data
they are stored as a series of so called value-pairs. This data must be seen as mostly binary and is stored as
such. As security labels from selinux are also extended attributes this option also stores those labels and no
specific code is enabled for handling selinux security labels.

Currently the following platforms support extended attributes:

• Darwin/OSX

• FreeBSD

• Linux

• NetBSD

On linux acls are also extended attributes, as such when you enable ACLs on a Linux platform it will NOT
save the same data twice e.g. it will save the ACLs and not the same exteneded attribute.

To enable the backup of extended attributes please add the following to your fileset definition.

FileSet {

Name = "MyFileSet"

Include {

Options {

signature = MD5

xattrsupport = yes

}

File = ...

}

}

34 Bacula Version 5.0.3

7.5 Shared objects

A default build of Bacula will now create the libraries as shared objects (.so) rather than static libraries as
was previously the case. The shared libraries are built using libtool so it should be quite portable.

An important advantage of using shared objects is that on a machine with the Directory, File daemon, the
Storage daemon, and a console, you will have only one copy of the code in memory rather than four copies.
Also the total size of the binary release is smaller since the library code appears only once rather than once
for every program that uses it; this results in significant reduction in the size of the binaries particularly for
the utility tools.

In order for the system loader to find the shared objects when loading the Bacula binaries, the Bacula shared
objects must either be in a shared object directory known to the loader (typically /usr/lib) or they must be
in the directory that may be specified on the ./configure line using the --libdir option as:

./configure --libdir=/full-path/dir

the default is /usr/lib. If --libdir is specified, there should be no need to modify your loader configuration
provided that the shared objects are installed in that directory (Bacula does this with the make install
command). The shared objects that Bacula references are:

libbaccfg.so

libbacfind.so

libbacpy.so

libbac.so

These files are symbolically linked to the real shared object file, which has a version number to permit
running multiple versions of the libraries if desired (not normally the case).

If you have problems with libtool or you wish to use the old way of building static libraries, or you want to
build a static version of Bacula you may disable libtool on the configure command line with:

./configure --disable-libtool

7.6 Building Static versions of Bacula

In order to build static versions of Bacula, in addition to configuration options that were needed you now
must also add –disable-libtool. Example

./configure --enable-static-client-only --disable-libtool

7.7 Virtual Backup (Vbackup)

Bacula’s virtual backup feature is often called Synthetic Backup or Consolidation in other backup products.
It permits you to consolidate the previous Full backup plus the most recent Differential backup and any
subsequent Incremental backups into a new Full backup. This new Full backup will then be considered
as the most recent Full for any future Incremental or Differential backups. The VirtualFull backup is
accomplished without contacting the client by reading the previous backup data and writing it to a volume
in a different pool.

In some respects the Vbackup feature works similar to a Migration job, in that Bacula normally reads the
data from the pool specified in the Job resource, and writes it to the Next Pool specified in the Job

Bacula Version 5.0.3 35

resource. Note, this means that usually the output from the Virtual Backup is written into a different pool
from where your prior backups are saved. Doing it this way guarantees that you will not get a deadlock
situation attempting to read and write to the same volume in the Storage daemon. If you then want to
do subsequent backups, you may need to move the Virtual Full Volume back to your normal backup pool.
Alternatively, you can set your Next Pool to point to the current pool. This will cause Bacula to read
and write to Volumes in the current pool. In general, this will work, because Bacula will not allow reading
and writing on the same Volume. In any case, once a VirtualFull has been created, and a restore is done
involving the most current Full, it will read the Volume or Volumes by the VirtualFull regardless of in which
Pool the Volume is found.

The Vbackup is enabled on a Job by Job in the Job resource by specifying a level of VirtualFull.

A typical Job resource definition might look like the following:

Job {

Name = "MyBackup"

Type = Backup

Client=localhost-fd

FileSet = "Full Set"

Storage = File

Messages = Standard

Pool = Default

SpoolData = yes

}

Default pool definition

Pool {

Name = Default

Pool Type = Backup

Recycle = yes # Automatically recycle Volumes

AutoPrune = yes # Prune expired volumes

Volume Retention = 365d # one year

NextPool = Full

Storage = File

}

Pool {

Name = Full

Pool Type = Backup

Recycle = yes # Automatically recycle Volumes

AutoPrune = yes # Prune expired volumes

Volume Retention = 365d # one year

Storage = DiskChanger

}

Definition of file storage device

Storage {

Name = File

Address = localhost

Password = "xxx"

Device = FileStorage

Media Type = File

Maximum Concurrent Jobs = 5

}

Definition of DDS Virtual tape disk storage device

Storage {

Name = DiskChanger

Address = localhost # N.B. Use a fully qualified name here

Password = "yyy"

36 Bacula Version 5.0.3

Device = DiskChanger

Media Type = DiskChangerMedia

Maximum Concurrent Jobs = 4

Autochanger = yes

}

Then in bconsole or via a Run schedule, you would run the job as:

run job=MyBackup level=Full

run job=MyBackup level=Incremental

run job=MyBackup level=Differential

run job=MyBackup level=Incremental

run job=MyBackup level=Incremental

So providing there were changes between each of those jobs, you would end up with a Full backup, a
Differential, which includes the first Incremental backup, then two Incremental backups. All the above jobs
would be written to the Default pool.

To consolidate those backups into a new Full backup, you would run the following:

run job=MyBackup level=VirtualFull

And it would produce a new Full backup without using the client, and the output would be written to the
Full Pool which uses the Diskchanger Storage.

If the Virtual Full is run, and there are no prior Jobs, the Virtual Full will fail with an error.

Note, the Start and End time of the Virtual Full backup is set to the values for the last job included in the
Virtual Full (in the above example, it is an Increment). This is so that if another incremental is done, which
will be based on the Virtual Full, it will backup all files from the last Job included in the Virtual Full rather
than from the time the Virtual Full was actually run.

7.8 Catalog Format

Bacula 3.0 comes with some changes to the catalog format. The upgrade operation will convert the FileId
field of the File table from 32 bits (max 4 billion table entries) to 64 bits (very large number of items). The
conversion process can take a bit of time and will likely DOUBLE THE SIZE of your catalog during the
conversion. Also you won’t be able to run jobs during this conversion period. For example, a 3 million file
catalog will take 2 minutes to upgrade on a normal machine. Please don’t forget to make a valid backup of
your database before executing the upgrade script. See the ReleaseNotes for additional details.

7.9 64 bit Windows Client

Unfortunately, Microsoft’s implementation of Volume Shadown Copy (VSS) on their 64 bit OS versions is
not compatible with a 32 bit Bacula Client. As a consequence, we are also releasing a 64 bit version of the
Bacula Windows Client (win64bacula-3.0.0.exe) that does work with VSS. These binaries should only be
installed on 64 bit Windows operating systems. What is important is not your hardware but whether or not
you have a 64 bit version of the Windows OS.

Compared to the Win32 Bacula Client, the 64 bit release contains a few differences:

1. Before installing the Win64 Bacula Client, you must totally deinstall any prior 2.4.x Client installation
using the Bacula deinstallation (see the menu item). You may want to save your .conf files first.

Bacula Version 5.0.3 37

2. Only the Client (File daemon) is ported to Win64, the Director and the Storage daemon are not in
the 64 bit Windows installer.

3. bwx-console is not yet ported.

4. bconsole is ported but it has not been tested.

5. The documentation is not included in the installer.

6. Due to Vista security restrictions imposed on a default installation of Vista, before upgrading the
Client, you must manually stop any prior version of Bacula from running, otherwise the install will
fail.

7. Due to Vista security restrictions imposed on a default installation of Vista, attempting to edit the
conf files via the menu items will fail. You must directly edit the files with appropriate permissions.
Generally double clicking on the appropriate .conf file will work providing you have sufficient permis-
sions.

8. All Bacula files are now installed in C:/Program Files/Bacula except the main menu items, which
are installed as before. This vastly simplifies the installation.

9. If you are running on a foreign language version of Windows, most likely C:/Program Files does not
exist, so you should use the Custom installation and enter an appropriate location to install the files.

10. The 3.0.0 Win32 Client continues to install files in the locations used by prior versions. For the next
version we will convert it to use the same installation conventions as the Win64 version.

This project was funded by Bacula Systems.

7.10 Duplicate Job Control

The new version of Bacula provides four new directives that give additional control over what Bacula does if
duplicate jobs are started. A duplicate job in the sense we use it here means a second or subsequent job with
the same name starts. This happens most frequently when the first job runs longer than expected because
no tapes are available.

The four directives each take as an argument a yes or no value and are specified in the Job resource.

They are:

7.10.1 Allow Duplicate Jobs = <yes|no>

If this directive is set to yes, duplicate jobs will be run. If the directive is set to no (default) then only one
job of a given name may run at one time, and the action that Bacula takes to ensure only one job runs is
determined by the other directives (see below).

If Allow Duplicate Jobs is set to no and two jobs are present and none of the three directives given below
permit cancelling a job, then the current job (the second one started) will be cancelled.

7.10.2 Allow Higher Duplicates = <yes|no>

This directive was in version 5.0.0, but does not work as expected. If used, it should always be set to no. In
later versions of Bacula the directive is disabled (disregarded).

7.10.3 Cancel Running Duplicates = <yes|no>

If Allow Duplicate Jobs is set to no and if this directive is set to yes any job that is already running will
be canceled. The default is no.

38 Bacula Version 5.0.3

7.10.4 Cancel Queued Duplicates = <yes|no>

If Allow Duplicate Jobs is set to no and if this directive is set to yes any job that is already queued to
run but not yet running will be canceled. The default is no.

7.11 TLS Authentication

In Bacula version 2.5.x and later, in addition to the normal Bacula CRAM-MD5 authentication that is used
to authenticate each Bacula connection, you can specify that you want TLS Authentication as well, which
will provide more secure authentication.

This new feature uses Bacula’s existing TLS code (normally used for communications encryption) to do
authentication. To use it, you must specify all the TLS directives normally used to enable communications
encryption (TLS Enable, TLS Verify Peer, TLS Certificate, ...) and a new directive:

7.11.1 TLS Authenticate = yes

TLS Authenticate = yes

in the main daemon configuration resource (Director for the Director, Client for the File daemon, and Storage
for the Storage daemon).

When TLS Authenticate is enabled, after doing the CRAM-MD5 authentication, Bacula will also do TLS
authentication, then TLS encryption will be turned off, and the rest of the communication between the two
Bacula daemons will be done without encryption.

If you want to encrypt communications data, use the normal TLS directives but do not turn on TLS
Authenticate.

7.12 bextract non-portable Win32 data

bextract has been enhanced to be able to restore non-portable Win32 data to any OS. Previous versions
were unable to restore non-portable Win32 data to machines that did not have the Win32 BackupRead and
BackupWrite API calls.

7.13 State File updated at Job Termination

In previous versions of Bacula, the state file, which provides a summary of previous jobs run in the status
command output was updated only when Bacula terminated, thus if the daemon crashed, the state file
might not contain all the run data. This version of the Bacula daemons updates the state file on each job
termination.

7.14 MaxFullInterval = <time-interval>

The new Job resource directive Max Full Interval = <time-interval> can be used to specify the max-
imum time interval between Full backup jobs. When a job starts, if the time since the last Full backup is
greater than the specified interval, and the job would normally be an Incremental or Differential, it will
be automatically upgraded to a Full backup.

Bacula Version 5.0.3 39

7.15 MaxDiffInterval = <time-interval>

The new Job resource directive Max Diff Interval = <time-interval> can be used to specify the maxi-
mum time interval betweenDifferential backup jobs. When a job starts, if the time since the last Differential
backup is greater than the specified interval, and the job would normally be an Incremental, it will be
automatically upgraded to a Differential backup.

7.16 Honor No Dump Flag = <yes|no>

On FreeBSD systems, each file has a no dump flag that can be set by the user, and when it is set it is
an indication to backup programs to not backup that particular file. This version of Bacula contains a new
Options directive within a FileSet resource, which instructs Bacula to obey this flag. The new directive is:

Honor No Dump Flag = yes\vb{}no

The default value is no.

7.17 Exclude Dir Containing = <filename-string>

The ExcludeDirContaining = <filename> is a new directive that can be added to the Include section
of the FileSet resource. If the specified filename (filename-string) is found on the Client in any directory
to be backed up, the whole directory will be ignored (not backed up). For example:

List of files to be backed up

FileSet {

Name = "MyFileSet"

Include {

Options {

signature = MD5

}

File = /home

Exclude Dir Containing = .excludeme

}

}

But in /home, there may be hundreds of directories of users and some people want to indicate that they don’t
want to have certain directories backed up. For example, with the above FileSet, if the user or sysadmin
creates a file named .excludeme in specific directories, such as

/home/user/www/cache/.excludeme

/home/user/temp/.excludeme

then Bacula will not backup the two directories named:

/home/user/www/cache

/home/user/temp

NOTE: subdirectories will not be backed up. That is, the directive applies to the two directories in question
and any children (be they files, directories, etc).

40 Bacula Version 5.0.3

7.18 Bacula Plugins

Support for shared object plugins has been implemented in the Linux, Unix and Win32 File daemons. The
API will be documented separately in the Developer’s Guide or in a new document. For the moment, there
is a single plugin named bpipe that allows an external program to get control to backup and restore a file.

Plugins are also planned (partially implemented) in the Director and the Storage daemon.

7.18.1 Plugin Directory

Each daemon (DIR, FD, SD) has a new Plugin Directory directive that may be added to the daemon
definition resource. The directory takes a quoted string argument, which is the name of the directory in
which the daemon can find the Bacula plugins. If this directive is not specified, Bacula will not load any
plugins. Since each plugin has a distinctive name, all the daemons can share the same plugin directory.

7.18.2 Plugin Options

The Plugin Options directive takes a quoted string arguement (after the equal sign) and may be specified
in the Job resource. The options specified will be passed to all plugins when they are run. This each plugin
must know what it is looking for. The value defined in the Job resource can be modified by the user when
he runs a Job via the bconsole command line prompts.

Note: this directive may be specified, and there is code to modify the string in the run command, but the
plugin options are not yet passed to the plugin (i.e. not fully implemented).

7.18.3 Plugin Options ACL

The Plugin Options ACL directive may be specified in the Director’s Console resource. It functions as all
the other ACL commands do by permitting users running restricted consoles to specify a Plugin Options
that overrides the one specified in the Job definition. Without this directive restricted consoles may not
modify the Plugin Options.

7.18.4 Plugin = <plugin-command-string>

The Plugin directive is specified in the Include section of a FileSet resource where you put your File =
xxx directives. For example:

FileSet {

Name = "MyFileSet"

Include {

Options {

signature = MD5

}

File = /home

Plugin = "bpipe:..."

}

}

In the above example, when the File daemon is processing the directives in the Include section, it will first
backup all the files in /home then it will load the plugin named bpipe (actually bpipe-dir.so) from the
Plugin Directory. The syntax and semantics of the Plugin directive require the first part of the string up to
the colon (:) to be the name of the plugin. Everything after the first colon is ignored by the File daemon

Bacula Version 5.0.3 41

but is passed to the plugin. Thus the plugin writer may define the meaning of the rest of the string as he
wishes.

Please see the next section for information about the bpipe Bacula plugin.

7.19 The bpipe Plugin

The bpipe plugin is provided in the directory src/plugins/fd/bpipe-fd.c of the Bacula source distribution.
When the plugin is compiled and linking into the resulting dynamic shared object (DSO), it will have the
name bpipe-fd.so. Please note that this is a very simple plugin that was written for demonstration and
test purposes. It is and can be used in production, but that was never really intended.

The purpose of the plugin is to provide an interface to any system program for backup and restore. As
specified above the bpipe plugin is specified in the Include section of your Job’s FileSet resource. The full
syntax of the plugin directive as interpreted by the bpipe plugin (each plugin is free to specify the sytax as
it wishes) is:

Plugin = "<field1>:<field2>:<field3>:<field4>"

where

field1 is the name of the plugin with the trailing -fd.so stripped off, so in this case, we would put bpipe
in this field.

field2 specifies the namespace, which for bpipe is the pseudo path and filename under which the backup
will be saved. This pseudo path and filename will be seen by the user in the restore file tree. For
example, if the value is /MYSQL/regress.sql, the data backed up by the plugin will be put under
that ”pseudo” path and filename. You must be careful to choose a naming convention that is unique
to avoid a conflict with a path and filename that actually exists on your system.

field3 for the bpipe plugin specifies the ”reader” program that is called by the plugin during backup to
read the data. bpipe will call this program by doing a popen on it.

field4 for the bpipe plugin specifies the ”writer” program that is called by the plugin during restore to
write the data back to the filesystem.

Please note that for two items above describing the ”reader” and ”writer” fields, these programs are ”exe-
cuted” by Bacula, which means there is no shell interpretation of any command line arguments you might
use. If you want to use shell characters (redirection of input or output, ...), then we recommend that you
put your command or commands in a shell script and execute the script. In addition if you backup a file
with the reader program, when running the writer program during the restore, Bacula will not automatically
create the path to the file. Either the path must exist, or you must explicitly do so with your command or
in a shell script.

Putting it all together, the full plugin directive line might look like the following:

Plugin = "bpipe:/MYSQL/regress.sql:mysqldump -f

--opt --databases bacula:mysql"

The directive has been split into two lines, but within the bacula-dir.conf file would be written on a single
line.

This causes the File daemon to call the bpipe plugin, which will write its data into the ”pseudo” file
/MYSQL/regress.sql by calling the program mysqldump -f –opt –database bacula to read the data
during backup. The mysqldump command outputs all the data for the database named bacula, which will
be read by the plugin and stored in the backup. During restore, the data that was backed up will be sent

42 Bacula Version 5.0.3

to the program specified in the last field, which in this case is mysql. When mysql is called, it will read
the data sent to it by the plugn then write it back to the same database from which it came (bacula in this
case).

The bpipe plugin is a generic pipe program, that simply transmits the data from a specified program to
Bacula for backup, and then from Bacula to a specified program for restore.

By using different command lines to bpipe, you can backup any kind of data (ASCII or binary) depending
on the program called.

7.20 Microsoft Exchange Server 2003/2007 Plugin

7.20.1 Background

The Exchange plugin was made possible by a funded development project between Equiinet Ltd –
www.equiinet.com (many thanks) and Bacula Systems. The code for the plugin was written by James
Harper, and the Bacula core code by Kern Sibbald. All the code for this funded development has become
part of the Bacula project. Thanks to everyone who made it happen.

7.20.2 Concepts

Although it is possible to backup Exchange using Bacula VSS the Exchange plugin adds a good deal of
functionality, because while Bacula VSS completes a full backup (snapshot) of Exchange, it does not support
Incremental or Differential backups, restoring is more complicated, and a single database restore is not
possible.

Microsoft Exchange organises its storage into Storage Groups with Databases inside them. A default instal-
lation of Exchange will have a single Storage Group called ’First Storage Group’, with two Databases inside
it, ”Mailbox Store (SERVER NAME)” and ”Public Folder Store (SERVER NAME)”, which hold user email
and public folders respectively.

In the default configuration, Exchange logs everything that happens to log files, such that if you have a
backup, and all the log files since, you can restore to the present time. Each Storage Group has its own set
of log files and operates independently of any other Storage Groups. At the Storage Group level, the logging
can be turned off by enabling a function called ”Enable circular logging”. At this time the Exchange plugin
will not function if this option is enabled.

The plugin allows backing up of entire storage groups, and the restoring of entire storage groups or individual
databases. Backing up and restoring at the individual mailbox or email item is not supported but can be
simulated by use of the ”Recovery” Storage Group (see below).

7.20.3 Installing

The Exchange plugin requires a DLL that is shipped with Microsoft Exchanger Server called esebcli2.dll.
Assuming Exchange is installed correctly the Exchange plugin should find this automatically and run without
any additional installation.

If the DLL can not be found automatically it will need to be copied into the Bacula installation directory (eg
C:\Program Files\Bacula\bin). The Exchange API DLL is named esebcli2.dll and is found in C:\Program
Files\Exchsrvr\bin on a default Exchange installation.

Bacula Version 5.0.3 43

7.20.4 Backing Up

To back up an Exchange server the Fileset definition must contain at least Plugin = ”ex-
change:/@EXCHANGE/Microsoft Information Store” for the backup to work correctly. The ’ex-
change:’ bit tells Bacula to look for the exchange plugin, the ’@EXCHANGE’ bit makes sure all the backed
up files are prefixed with something that isn’t going to share a name with something outside the plugin, and
the ’Microsoft Information Store’ bit is required also. It is also possible to add the name of a storage group
to the ”Plugin =” line, eg
Plugin = ”exchange:/@EXCHANGE/Microsoft Information Store/First Storage Group”
if you want only a single storage group backed up.

Additionally, you can suffix the ’Plugin =’ directive with ”:notrunconfull” which will tell the plugin not to
truncate the Exchange database at the end of a full backup.

An Incremental or Differential backup will backup only the database logs for each Storage Group by inspect-
ing the ”modified date” on each physical log file. Because of the way the Exchange API works, the last logfile
backed up on each backup will always be backed up by the next Incremental or Differential backup too. This
adds 5MB to each Incremental or Differential backup size but otherwise does not cause any problems.

By default, a normal VSS fileset containing all the drive letters will also back up the Exchange databases
using VSS. This will interfere with the plugin and Exchange’s shared ideas of when the last full backup was
done, and may also truncate log files incorrectly. It is important, therefore, that the Exchange database files
be excluded from the backup, although the folders the files are in should be included, or they will have to
be recreated manually if a baremetal restore is done.

FileSet {

Include {

File = C:/Program Files/Exchsrvr/mdbdata

Plugin = "exchange:..."

}

Exclude {

File = C:/Program Files/Exchsrvr/mdbdata/E00.chk

File = C:/Program Files/Exchsrvr/mdbdata/E00.log

File = C:/Program Files/Exchsrvr/mdbdata/E000000F.log

File = C:/Program Files/Exchsrvr/mdbdata/E0000010.log

File = C:/Program Files/Exchsrvr/mdbdata/E0000011.log

File = C:/Program Files/Exchsrvr/mdbdata/E00tmp.log

File = C:/Program Files/Exchsrvr/mdbdata/priv1.edb

}

}

The advantage of excluding the above files is that you can significantly reduce the size of your backup since
all the important Exchange files will be properly saved by the Plugin.

7.20.5 Restoring

The restore operation is much the same as a normal Bacula restore, with the following provisos:

• The Where restore option must not be specified

• Each Database directory must be marked as a whole. You cannot just select (say) the .edb file and
not the others.

• If a Storage Group is restored, the directory of the Storage Group must be marked too.

• It is possible to restore only a subset of the available log files, but they must be contiguous. Exchange
will fail to restore correctly if a log file is missing from the sequence of log files

• Each database to be restored must be dismounted and marked as ”Can be overwritten by restore”

44 Bacula Version 5.0.3

• If an entire Storage Group is to be restored (eg all databases and logs in the Storage Group), then it is
best to manually delete the database files from the server (eg C:\Program Files\Exchsrvr\mdbdata*)
as Exchange can get confused by stray log files lying around.

7.20.6 Restoring to the Recovery Storage Group

The concept of the Recovery Storage Group is well documented by Microsoft
http://support.microsoft.com/kb/824126, but to briefly summarize...

Microsoft Exchange allows the creation of an additional Storage Group called the Recovery Storage Group,
which is used to restore an older copy of a database (e.g. before a mailbox was deleted) into without messing
with the current live data. This is required as the Standard and Small Business Server versions of Exchange
can not ordinarily have more than one Storage Group.

To create the Recovery Storage Group, drill down to the Server in Exchange System Manager, right click,
and select ”New -¿ Recovery Storage Group...”. Accept or change the file locations and click OK.
On the Recovery Storage Group, right click and select ”Add Database to Recover...” and select the
database you will be restoring.

Restore only the single database nominated as the database in the Recovery Storage Group. Exchange will
redirect the restore to the Recovery Storage Group automatically. Then run the restore.

7.20.7 Restoring on Microsoft Server 2007

Apparently the Exmerge program no longer exists in Microsoft Server 2007, and henc you use a
new proceedure for recovering a single mail box. This procedure is ducomented by Microsoft at:
http://technet.microsoft.com/en-us/library/aa997694.aspx, and involves using the Restore-Mailbox and
Get-MailboxStatistics shell commands.

7.20.8 Caveats

This plugin is still being developed, so you should consider it currently in BETA test, and thus use in a
production environment should be done only after very careful testing.

When doing a full backup, the Exchange database logs are truncated by Exchange as soon as the plugin has
completed the backup. If the data never makes it to the backup medium (eg because of spooling) then the
logs will still be truncated, but they will also not have been backed up. A solution to this is being worked
on. You will have to schedule a new Full backup to ensure that your next backups will be usable.

The ”Enable Circular Logging” option cannot be enabled or the plugin will fail.

Exchange insists that a successful Full backup must have taken place if an Incremental or Differential backup
is desired, and the plugin will fail if this is not the case. If a restore is done, Exchange will require that a
Full backup be done before an Incremental or Differential backup is done.

The plugin will most likely not work well if another backup application (eg NTBACKUP) is backing up the
Exchange database, especially if the other backup application is truncating the log files.

The Exchange plugin has not been tested with the Accurate option, so we recommend either carefully
testing or that you avoid this option for the current time.

The Exchange plugin is not called during processing the bconsole estimate command, and so anything that
would be backed up by the plugin will not be added to the estimate total that is displayed.

http://support.microsoft.com/kb/824126
http://technet.microsoft.com/en-us/library/aa997694.aspx

Bacula Version 5.0.3 45

7.21 libdbi Framework

As a general guideline, Bacula has support for a few catalog database drivers (MySQL, PostgreSQL, SQLite)
coded natively by the Bacula team. With the libdbi implementation, which is a Bacula driver that uses libdbi
to access the catalog, we have an open field to use many different kinds database engines following the needs
of users.

The according to libdbi (http://libdbi.sourceforge.net/) project: libdbi implements a database-independent
abstraction layer in C, similar to the DBI/DBD layer in Perl. Writing one generic set of code, programmers
can leverage the power of multiple databases and multiple simultaneous database connections by using this
framework.

Currently the libdbi driver in Bacula project only supports the same drivers natively coded in Bacula. How-
ever the libdbi project has support for many others database engines. You can view the list at http://libdbi-
drivers.sourceforge.net/. In the future all those drivers can be supported by Bacula, however, they must be
tested properly by the Bacula team.

Some of benefits of using libdbi are:

• The possibility to use proprietary databases engines in which your proprietary licenses prevent the
Bacula team from developing the driver.

• The possibility to use the drivers written for the libdbi project.

• The possibility to use other database engines without recompiling Bacula to use them. Just change
one line in bacula-dir.conf

• Abstract Database access, this is, unique point to code and profiling catalog database access.

The following drivers have been tested:

• PostgreSQL, with and without batch insert

• Mysql, with and without batch insert

• SQLite

• SQLite3

In the future, we will test and approve to use others databases engines (proprietary or not) like DB2, Oracle,
Microsoft SQL.

To compile Bacula to support libdbi we need to configure the code with the –with-dbi and –with-dbi-
driver=[database] ./configure options, where [database] is the database engine to be used with Bacula (of
course we can change the driver in file bacula-dir.conf, see below). We must configure the access port of
the database engine with the option –with-db-port, because the libdbi framework doesn’t know the default
access port of each database.

The next phase is checking (or configuring) the bacula-dir.conf, example:

Catalog {

Name = MyCatalog

dbdriver = dbi:mysql; dbaddress = 127.0.0.1; dbport = 3306

dbname = regress; user = regress; password = ""

}

The parameter dbdriver indicates that we will use the driver dbi with a mysql database. Currently the
drivers supported by Bacula are: postgresql, mysql, sqlite, sqlite3; these are the names that may be added
to string ”dbi:”.

46 Bacula Version 5.0.3

The following limitations apply when Bacula is set to use the libdbi framework: - Not tested on the Win32
platform - A little performance is lost if comparing with native database driver. The reason is bound with
the database driver provided by libdbi and the simple fact that one more layer of code was added.

It is important to remember, when compiling Bacula with libdbi, the following packages are needed:

• libdbi version 1.0.0, http://libdbi.sourceforge.net/

• libdbi-drivers 1.0.0, http://libdbi-drivers.sourceforge.net/

You can download them and compile them on your system or install the packages from your OS distribution.

7.22 Console Command Additions and Enhancements

7.22.1 Display Autochanger Content

The status slots storage=<storage-name> command displays autochanger content.

Slot | Volume Name | Status | Media Type | Pool |

------+---------------+----------+-------------------+------------|

1 | 00001 | Append | DiskChangerMedia | Default |

2 | 00002 | Append | DiskChangerMedia | Default |

3*| 00003 | Append | DiskChangerMedia | Scratch |

4 | | | | |

If you an asterisk (*) appears after the slot number, you must run an update slots command to synchronize
autochanger content with your catalog.

7.22.2 list joblog job=xxx or jobid=nnn

A new list command has been added that allows you to list the contents of the Job Log stored in the catalog
for either a Job Name (fully qualified) or for a particular JobId. The llist command will include a line with
the time and date of the entry.

Note for the catalog to have Job Log entries, you must have a directive such as:

catalog = all

In your Director’s Messages resource.

7.22.3 Use separator for multiple commands

When using bconsole with readline, you can set the command separator with @separator command to one
of those characters to write commands who require multiple input in one line.

!$%&’()*+,-/:;<>?[]^‘{|}~

7.22.4 Deleting Volumes

The delete volume bconsole command has been modified to require an asterisk (*) in front of a MediaId
otherwise the value you enter is a taken to be a Volume name. This is so that users may delete numeric

Bacula Version 5.0.3 47

Volume names. The previous Bacula versions assumed that all input that started with a number was a
MediaId.

This new behavior is indicated in the prompt if you read it carefully.

7.23 Bare Metal Recovery

The old bare metal recovery project is essentially dead. One of the main features of it was that it would
build a recovery CD based on the kernel on your system. The problem was that every distribution has a
different boot procedure and different scripts, and worse yet, the boot procedures and scripts change from
one distribution to another. This meant that maintaining (keeping up with the changes) the rescue CD was
too much work.

To replace it, a new bare metal recovery USB boot stick has been developed by Bacula Systems. This
technology involves remastering a Ubuntu LiveCD to boot from a USB key.

Advantages:

1. Recovery can be done from within graphical environment.

2. Recovery can be done in a shell.

3. Ubuntu boots on a large number of Linux systems.

4. The process of updating the system and adding new packages is not too difficult.

5. The USB key can easily be upgraded to newer Ubuntu versions.

6. The USB key has writable partitions for modifications to the OS and for modification to your home
directory.

7. You can add new files/directories to the USB key very easily.

8. You can save the environment from multiple machines on one USB key.

9. Bacula Systems is funding its ongoing development.

The disadvantages are:

1. The USB key is usable but currently under development.

2. Not everyone may be familiar with Ubuntu (no worse than using Knoppix)

3. Some older OSes cannot be booted from USB. This can be resolved by first booting a Ubuntu LiveCD
then plugging in the USB key.

4. Currently the documentation is sketchy and not yet added to the main manual. See below ...

The documentation and the code can be found in the rescue package in the directory linux/usb.

7.24 Miscellaneous

7.24.1 Allow Mixed Priority = <yes|no>

This directive is only implemented in version 2.5 and later. When set to yes (default no), this job may run
even if lower priority jobs are already running. This means a high priority job will not have to wait for other
jobs to finish before starting. The scheduler will only mix priorities when all running jobs have this set to
true.

48 Bacula Version 5.0.3

Note that only higher priority jobs will start early. Suppose the director will allow two concurrent jobs, and
that two jobs with priority 10 are running, with two more in the queue. If a job with priority 5 is added to
the queue, it will be run as soon as one of the running jobs finishes. However, new priority 10 jobs will not
be run until the priority 5 job has finished.

7.24.2 Bootstrap File Directive – FileRegex

FileRegex is a new command that can be added to the bootstrap (.bsr) file. The value is a regular
expression. When specified, only matching filenames will be restored.

During a restore, if all File records are pruned from the catalog for a Job, normally Bacula can restore only
all files saved. That is there is no way using the catalog to select individual files. With this new feature,
Bacula will ask if you want to specify a Regex expression for extracting only a part of the full backup.

Building directory tree for JobId(s) 1,3 ...

There were no files inserted into the tree, so file selection

is not possible.Most likely your retention policy pruned the files

Do you want to restore all the files? (yes\vb{}no): no

Regexp matching files to restore? (empty to abort): /tmp/regress/(bin|tests)/

Bootstrap records written to /tmp/regress/working/zog4-dir.restore.1.bsr

7.24.3 Bootstrap File Optimization Changes

In order to permit proper seeking on disk files, we have extended the bootstrap file format to include a
VolStartAddr and VolEndAddr records. Each takes a 64 bit unsigned integer range (i.e. nnn-mmm)
which defines the start address range and end address range respectively. These two directives replace the
VolStartFile, VolEndFile, VolStartBlock and VolEndBlock directives. Bootstrap files containing the
old directives will still work, but will not properly take advantage of proper disk seeking, and may read
completely to the end of a disk volume during a restore. With the new format (automatically generated
by the new Director), restores will seek properly and stop reading the volume when all the files have been
restored.

7.24.4 Solaris ZFS/NFSv4 ACLs

This is an upgrade of the previous Solaris ACL backup code to the new library format, which will backup
both the old POSIX(UFS) ACLs as well as the ZFS ACLs.

The new code can also restore POSIX(UFS) ACLs to a ZFS filesystem (it will translate the POSIX(UFS))
ACL into a ZFS/NFSv4 one) it can also be used to transfer from UFS to ZFS filesystems.

7.24.5 Virtual Tape Emulation

We now have a Virtual Tape emulator that allows us to run though 99.9% of the tape code but actually
reading and writing to a disk file. Used with the disk-changer script, you can now emulate an autochanger
with 10 drives and 700 slots. This feature is most useful in testing. It is enabled by using Device Type =
vtape in the Storage daemon’s Device directive. This feature is only implemented on Linux machines and
should not be used for production.

Bacula Version 5.0.3 49

7.24.6 Bat Enhancements

Bat (the Bacula Administration Tool) GUI program has been significantly enhanced and stabilized. In
particular, there are new table based status commands; it can now be easily localized using Qt4 Linguist.

The Bat communications protocol has been significantly enhanced to improve GUI handling. Note, youmust
use a the bat that is distributed with the Director you are using otherwise the communications protocol will
not work.

7.24.7 RunScript Enhancements

The RunScript resource has been enhanced to permit multiple commands per RunScript. Simply specify
multiple Command directives in your RunScript.

Job {

Name = aJob

RunScript {

Command = "/bin/echo test"

Command = "/bin/echo an other test"

Command = "/bin/echo 3 commands in the same runscript"

RunsWhen = Before

}

...

}

A new Client RunScriptRunsWhen keyword ofAfterVSS has been implemented, which runs the command
after the Volume Shadow Copy has been made.

Console commands can be specified within a RunScript by using: Console = <command>, however, this
command has not been carefully tested and debugged and is known to easily crash the Director. We would
appreciate feedback. Due to the recursive nature of this command, we may remove it before the final release.

7.24.8 Status Enhancements

The bconsole status dir output has been enhanced to indicate Storage daemon job spooling and despooling
activity.

7.24.9 Connect Timeout

The default connect timeout to the File daemon has been set to 3 minutes. Previously it was 30 minutes.

7.24.10 ftruncate for NFS Volumes

If you write to a Volume mounted by NFS (say on a local file server), in previous Bacula versions, when
the Volume was recycled, it was not properly truncated because NFS does not implement ftruncate (file
truncate). This is now corrected in the new version because we have written code (actually a kind user) that
deletes and recreates the Volume, thus accomplishing the same thing as a truncate.

7.24.11 Support for Ubuntu

The new version of Bacula now recognizes the Ubuntu (and Kubuntu) version of Linux, and thus now
provides correct autostart routines. Since Ubuntu officially supports Bacula, you can also obtain any recent

50 Bacula Version 5.0.3

release of Bacula from the Ubuntu repositories.

7.24.12 Recycle Pool = <pool-name>

The new RecyclePool directive defines to which pool the Volume will be placed (moved) when it is recycled.
Without this directive, a Volume will remain in the same pool when it is recycled. With this directive, it
can be moved automatically to any existing pool during a recycle. This directive is probably most useful
when defined in the Scratch pool, so that volumes will be recycled back into the Scratch pool.

7.24.13 FD Version

The File daemon to Director protocol now includes a version number, which although there is no visible
change for users, will help us in future versions automatically determine if a File daemon is not compatible.

7.24.14 Max Run Sched Time = <time-period-in-seconds>

The time specifies the maximum allowed time that a job may run, counted from when the job was scheduled.
This can be useful to prevent jobs from running during working hours. We can see it like Max Start Delay

+ Max Run Time.

7.24.15 Max Wait Time = <time-period-in-seconds>

Previous MaxWaitTime directives aren’t working as expected, instead of checking the maximum allowed
time that a job may block for a resource, those directives worked like MaxRunTime. Some users are
reporting to use Incr/Diff/Full Max Wait Time to control the maximum run time of their job depending
on the level. Now, they have to use Incr/Diff/Full Max Run Time. Incr/Diff/Full Max Wait Time
directives are now deprecated.

7.24.16 Incremental—Differential Max Wait Time = <time-period-in-seconds>

These directives have been deprecated in favor of Incremental|Differential Max Run Time.

7.24.17 Max Run Time directives

Using Full/Diff/Incr Max Run Time, it’s now possible to specify the maximum allowed time that a job
can run depending on the level.

7.24.18 Statistics Enhancements

If you (or probably your boss) want to have statistics on your backups to provide some Service Level
Agreement indicators, you could use a few SQL queries on the Job table to report how many:

• jobs have run

• jobs have been successful

• files have been backed up

• ...

Bacula Version 5.0.3 51

Figure 7.1: Job time control directives

However, these statistics are accurate only if your job retention is greater than your statistics period. Ie, if
jobs are purged from the catalog, you won’t be able to use them.

Now, you can use the update stats [days=num] console command to fill the JobHistory table with new
Job records. If you want to be sure to take in account only good jobs, ie if one of your important job has
failed but you have fixed the problem and restarted it on time, you probably want to delete the first bad job
record and keep only the successful one. For that simply let your staff do the job, and update JobHistory
table after two or three days depending on your organization using the [days=num] option.

These statistics records aren’t used for restoring, but mainly for capacity planning, billings, etc.

The Bweb interface provides a statistics module that can use this feature. You can also use tools like Talend
or extract information by yourself.

The Statistics Retention = <time> director directive defines the length of time that Bacula will keep
statistics job records in the Catalog database after the Job End time. (In JobHistory table) When this
time period expires, and if user runs prune stats command, Bacula will prune (remove) Job records that
are older than the specified period.

You can use the following Job resource in your nightly BackupCatalog job to maintain statistics.

Job {

Name = BackupCatalog

...

RunScript {

Console = "update stats days=3"

Console = "prune stats yes"

RunsWhen = After

RunsOnClient = no

}

}

7.24.19 ScratchPool = <pool-resource-name>

This directive permits to specify a specific Scratch pool for the current pool. This is useful when using
multiple storage sharing the same mediatype or when you want to dedicate volumes to a particular set of
pool.

52 Bacula Version 5.0.3

7.24.20 Enhanced Attribute Despooling

If the storage daemon and the Director are on the same machine, the spool file that contains attributes is
read directly by the Director instead of being transmitted across the network. That should reduce load and
speedup insertion.

7.24.21 SpoolSize = <size-specification-in-bytes>

A new Job directive permits to specify the spool size per job. This is used in advanced job tunning.
SpoolSize=bytes

7.24.22 MaximumConsoleConnections = <number>

A new director directive permits to specify the maximum number of Console Connections that could run
concurrently. The default is set to 20, but you may set it to a larger number.

7.24.23 VerId = <string>

A new director directive permits to specify a personnal identifier that will be displayed in the version

command.

7.24.24 dbcheck enhancements

If you are using Mysql, dbcheck will now ask you if you want to create temporary indexes to speed up
orphaned Path and Filename elimination.

A new -B option allows you to print catalog information in a simple text based format. This is useful to
backup it in a secure way.

$ dbcheck -B

catalog=MyCatalog

db_type=SQLite

db_name=regress

db_driver=

db_user=regress

db_password=

db_address=

db_port=0

db_socket=

You can now specify the database connection port in the command line.

7.24.25 --docdir configure option

You can use --docdir= on the ./configure command to specify the directory where you want Bacula to install
the LICENSE, ReleaseNotes, ChangeLog, ... files. The default is /usr/share/doc/bacula.

Bacula Version 5.0.3 53

7.24.26 --htmldir configure option

You can use --htmldir= on the ./configure command to specify the directory where you want Bacula to
install the bat html help files. The default is /usr/share/doc/bacula/html

7.24.27 --with-plugindir configure option

You can use --plugindir= on the ./configure command to specify the directory where you want Bacula to
install the plugins (currently only bpipe-fd). The default is /usr/lib.

54 Bacula Version 5.0.3

Chapter 8

The Current State of Bacula

In other words, what is and what is not currently implemented and functional.

8.1 What is Implemented

• Job Control

– Network backup/restore with centralized Director.

– Internal scheduler for automatic Job execution.

– Scheduling of multiple Jobs at the same time.

– You may run one Job at a time or multiple simultaneous Jobs (sometimes called multiplexing).

– Job sequencing using priorities.

– Console interface to the Director allowing complete control. A shell, Qt4 GUI, wxWidgets GUI
and Web versions of the Console program are available. Note, the Qt4 GUI program called the
Bacula Administration tool or bat, offers many additional features over the shell program.

• Security

– Verification of files previously cataloged, permitting a Tripwire like capability (system break-in
detection).

– CRAM-MD5 password authentication between each component (daemon).

– Configurable TLS (SSL) communications encryption between each component.

– Configurable Data (on Volume) encryption on a Client by Client basis.

– Computation of MD5 or SHA1 signatures of the file data if requested.

• Restore Features

– Restore of one or more files selected interactively either for the current backup or a backup prior
to a specified time and date.

– Restore of a complete system starting from bare metal. This is mostly automated for Linux
systems and partially automated for Solaris. See Disaster Recovery Using Bacula. This is also
reported to work on Win2K/XP systems.

– Listing and Restoration of files using stand-alone bls and bextract tool programs. Among other
things, this permits extraction of files when Bacula and/or the catalog are not available. Note, the
recommended way to restore files is using the restore command in the Console. These programs
are designed for use as a last resort.

– Ability to restore the catalog database rapidly by using bootstrap files (previously saved).

– Ability to recreate the catalog database by scanning backup Volumes using the bscan program.

• SQL Catalog

55

56 Bacula Version 5.0.3

– Catalog database facility for remembering Volumes, Pools, Jobs, and Files backed up.

– Support for MySQL, PostgreSQL, and SQLite Catalog databases.

– User extensible queries to the MySQL, PostgreSQL and SQLite databases.

• Advanced Volume and Pool Management

– Labeled Volumes, preventing accidental overwriting (at least by Bacula).

– Any number of Jobs and Clients can be backed up to a single Volume. That is, you can backup
and restore Linux, Unix, Sun, and Windows machines to the same Volume.

– Multi-volume saves. When a Volume is full, Bacula automatically requests the next Volume and
continues the backup.

– Pool and Volume library management providing Volume flexibility (e.g. monthly, weekly, daily
Volume sets, Volume sets segregated by Client, ...).

– Machine independent Volume data format. Linux, Solaris, and Windows clients can all be backed
up to the same Volume if desired.

– The Volume data format is upwards compatible so that old Volumes can always be read.

– A flexible message handler including routing of messages from any daemon back to the Director
and automatic email reporting.

– Data spooling to disk during backup with subsequent write to tape from the spooled disk files.
This prevents tape ”shoe shine” during Incremental/Differential backups.

• Advanced Support for most Storage Devices

– Autochanger support using a simple shell interface that can interface to virtually any autoloader
program. A script for mtx is provided.

– Support for autochanger barcodes – automatic tape labeling from barcodes.

– Automatic support for multiple autochanger magazines either using barcodes or by reading the
tapes.

– Support for multiple drive autochangers.

– Raw device backup/restore. Restore must be to the same device.

– All Volume blocks (approximately 64K bytes) contain a data checksum.

– Migration support – move data from one Pool to another or one Volume to another.

– Supports writing to DVD.

• Multi-Operating System Support

– Programmed to handle arbitrarily long filenames and messages.

– GZIP compression on a file by file basis done by the Client program if requested before network
transit.

– Saves and restores POSIX ACLs and Extended Attributes on most OSes if enabled.

– Access control lists for Consoles that permit restricting user access to only their data.

– Support for save/restore of files larger than 2GB.

– Support for 64 bit machines, e.g. amd64, Sparc.

– Support ANSI and IBM tape labels.

– Support for Unicode filenames (e.g. Chinese) on Win32 machines

– Consistent backup of open files on Win32 systems (WinXP, Win2003, and Vista) but not Win2000,
using Volume Shadow Copy (VSS).

– Support for path/filename lengths of up to 64K on Win32 machines (unlimited on Unix/Linux
machines).

• Miscellaneous

– Multi-threaded implementation.

– A comprehensive and extensible configuration file for each daemon.

Bacula Version 5.0.3 57

8.2 Advantages Over Other Backup Programs

• Since there is a client for each machine, you can backup and restore clients of any type ensuring that
all attributes of files are properly saved and restored.

• It is also possible to backup clients without any client software by using NFS or Samba. However, if
possible, we recommend running a Client File daemon on each machine to be backed up.

• Bacula handles multi-volume backups.

• A full comprehensive SQL standard database of all files backed up. This permits online viewing of files
saved on any particular Volume.

• Automatic pruning of the database (removal of old records) thus simplifying database administration.

• Any SQL database engine can be used making Bacula very flexible. Drivers currently exist for MySQL,
PostgreSQL, and SQLite.

• The modular but integrated design makes Bacula very scalable.

• Since Bacula uses client file servers, any database or other application can be properly shutdown by
Bacula using the native tools of the system, backed up, then restarted (all within a Bacula Job).

• Bacula has a built-in Job scheduler.

• The Volume format is documented and there are simple C programs to read/write it.

• Bacula uses well defined (IANA registered) TCP/IP ports – no rpcs, no shared memory.

• Bacula installation and configuration is relatively simple compared to other comparable products.

• According to one user Bacula is as fast as the big major commercial applications.

• According to another user Bacula is four times as fast as another commercial application, probably
because that application stores its catalog information in a large number of individual files rather than
an SQL database as Bacula does.

• Aside from several GUI administrative interfaces, Bacula has a comprehensive shell administrative
interface, which allows the administrator to use tools such as ssh to administrate any part of Bacula
from anywhere (even from home).

• Bacula has a Rescue CD for Linux systems with the following features:

– You build it on your own system from scratch with one simple command: make – well, then make
burn.

– It uses your kernel

– It captures your current disk parameters and builds scripts that allow you to automatically repar-
tition a disk and format it to put it back to what you had before.

– It has a script that will restart your networking (with the right IP address)

– It has a script to automatically mount your hard disks.

– It has a full Bacula FD statically linked

– You can easily add additional data/programs, ... to the disk.

8.3 Current Implementation Restrictions

• It is very unusual to attempt to restore two Jobs that ran simultaneously in a single restore, but if
you do, please be aware that unless you had data spooling turned on and the spool file held the full
contents of both Jobs during the backup, the restore will not work correctly. In other terms, Bacula
cannot restore two jobs in the same restore if the Jobs’ data blocks were intermixed on the backup
medium. The problem is resolved by simply doing two restores, one for each Job.

58 Bacula Version 5.0.3

• Bacula can generally restore any backup made from one client to any other client. However, if the
architecture is significantly different (i.e. 32 bit architecture to 64 bit or Win32 to Unix), some
restrictions may apply (e.g. Solaris door files do not exist on other Unix/Linux machines; there are
reports that Zlib compression written with 64 bit machines does not always read correctly on a 32 bit
machine).

8.4 Design Limitations or Restrictions

• Names (resource names, Volume names, and such) defined in Bacula configuration files are limited to a
fixed number of characters. Currently the limit is defined as 127 characters. Note, this does not apply
to filenames, which may be arbitrarily long.

• Command line input to some of the stand alone tools – e.g. btape, bconsole is restricted to several
hundred characters maximum.

8.5 Items to Note

• Bacula’s Differential and Incremental normal backups are based on time stamps. Consequently, if you
move files into an existing directory or move a whole directory into the backup fileset after a Full
backup, those files will probably not be backed up by an Incremental save because they will have
old dates. This problem is corrected by using Accurate mode backups or by explicitly updating the
date/time stamp on all moved files.

• In older versions of Bacula (<= 3.0.x), if you have over 4 billion file entries stored in your database,
the database FileId is likely to overflow.

• In non Accurate mode, files deleted after a Full save will be included in a restoration. This is typical
for most similar backup programs.

Chapter 9

System Requirements

• Bacula has been compiled and run on OpenSuSE Linux, FreeBSD, and Solaris systems.

• It requires GNU C++ version 2.95 or higher to compile. You can try with other compilers and older
versions, but you are on your own. We have successfully compiled and used Bacula using GNU C++
version 4.1.3. Note, in general GNU C++ is a separate package (e.g. RPM) from GNU C, so you need
them both loaded. On Red Hat systems, the C++ compiler is part of the gcc-c++ rpm package.

• There are certain third party packages that Bacula may need. Except for MySQL and PostgreSQL,
they can all be found in the depkgs and depkgs1 releases. However, most current Linux and FreeBSD
systems provide these as system packages.

• The minimum versions for each of the databases supported by Bacula are:

– MySQL 4.1

– PostgreSQL 7.4

– SQLite 3

• If you want to build the Win32 binaries, please see the README.mingw32 file in the src/win32
directory. We cross-compile the Win32 release on Linux. We provide documentation on building the
Win32 version, but due to the complexity, you are pretty much on your own if you want to build it
yourself.

• Bacula requires a good implementation of pthreads to work. This is not the case on some of the BSD
systems.

• The source code has been written with portability in mind and is mostly POSIX compatible. Thus
porting to any POSIX compatible operating system should be relatively easy.

• The GNOME Console program is developed and tested under GNOME 2.x. GNOME 1.4 is no longer
supported.

• The wxWidgets Console program is developed and tested with the latest stable ANSI or Unicode
version of wxWidgets (2.6.1). It works fine with the Windows and GTK+-2.x version of wxWidgets,
and should also work on other platforms supported by wxWidgets.

• The Tray Monitor program is developed for GTK+-2.x. It needs GNOME less or equal to 2.2, KDE
greater or equal to 3.1 or any window manager supporting the FreeDesktop system tray standard.

• If you want to enable command line editing and history, you will need to have /usr/include/termcap.h
and either the termcap or the ncurses library loaded (libtermcap-devel or ncurses-devel).

• If you want to use DVD as backup medium, you will need to download the dvd+rw-tools 5.21.4.10.8,
apply the patch that is in the patches directory of the main source tree to make these tools compatible
with Bacula, then compile and install them. There is also a patch for dvd+rw-tools version 6.1, and
we hope that the patch is integrated into a later version. Do not use the dvd+rw-tools provided by
your distribution, unless you are sure it contains the patch. dvd+rw-tools without the patch will not
work with Bacula. DVD media is not recommended for serious or important backups because of its
low reliability.

59

http://www.wxwidgets.org
http://www.freedesktop.org/Standards/systemtray-spec
http://fy.chalmers.se/~appro/linux/DVD+RW/

60 Bacula Version 5.0.3

Chapter 10

Supported Operating Systems

X Fully supported

⋆ The are reported to work in many cases and the Community has committed code for them. However
they are not directly supported by the Bacula project, as we don’t have the hardware.

Operating Systems Version Client Daemon Director Daemon Storage Daemon

GNU/Linux All X X X
FreeBSD ≥ 5.0 X X X
Solaris ≥ 8 X X X
OpenSolaris X X X

MS Windows 32bit Win98/Me X
WinNT/2K X ⋆ ⋆

XP X ⋆ ⋆

2008/Vista X ⋆ ⋆

MS Windows 64bit 2008/Vista X ⋆ ⋆

MacOS X/Darwin X ⋆ ⋆

OpenBSD X ⋆

NetBSD X ⋆

Irix ⋆

True64 ⋆

AIX ≥ 4.3 ⋆

BSDI ⋆

HPUX ⋆

Important notes

• By GNU/Linux, we mean 32/64bit Gentoo, Red Hat, Fedora, Mandriva, Debian, OpenSuSE, Ubuntu,
Kubuntu, . . .

• For FreeBSD older than version 5.0, please see some important considerations in the
Tape Modes on FreeBSD section of the Tape Testing chapter of this manual.

• MS Windows Director and Storage daemon are available in the binary Client installer

• For MacOSX see http://fink.sourceforge.net/ for obtaining the packages

See the Porting chapter of the Bacula Developer’s Guide for information on porting to other systems.

If you have a older Red Hat Linux system running the 2.4.x kernel and you have the directory /lib/tls
installed on your system (normally by default), bacula will NOT run. This is the new pthreads library
and it is defective. You must remove this directory prior to running Bacula, or you can simply change

61

http://fink.sourceforge.net/

62 Bacula Version 5.0.3

the name to /lib/tls-broken) then you must reboot your machine (one of the few times Linux must be
rebooted). If you are not able to remove/rename /lib/tls, an alternative is to set the environment variable
”LD ASSUME KERNEL=2.4.19” prior to executing Bacula. For this option, you do not need to reboot,
and all programs other than Bacula will continue to use /lib/tls. The above mentioned /lib/tls problem
does not occur with Linux 2.6 kernels.

Chapter 11

Supported Tape Drives

Bacula uses standard operating system calls (read, write, ioctl) to interface to tape drives. As a consequence,
it relies on having a correctly written OS tape driver. Bacula is known to work perfectly well with SCSI
tape drivers on FreeBSD, Linux, Solaris, and Windows machines, and it may work on other *nix machines,
but we have not tested it. Recently there are many new drives that use IDE, ATAPI, or SATA interfaces
rather than SCSI. On Linux the OnStream drive, which uses the OSST driver is one such example, and it
is known to work with Bacula. In addition a number of such tape drives (i.e. OS drivers) seem to work on
Windows systems. However, non-SCSI tape drives (other than the OnStream) that use ide-scis, ide-tape, or
other non-scsi drivers do not function correctly with Bacula (or any other demanding tape application) as
of today (April 2007). If you have purchased a non-SCSI tape drive for use with Bacula on Linux, there is a
good chance that it will not work. We are working with the kernel developers to rectify this situation, but
it will not be resolved in the near future.

Even if your drive is on the list below, please check the Tape Testing Chapter of this manual for procedures
that you can use to verify if your tape drive will work with Bacula. If your drive is in fixed block mode, it
may appear to work with Bacula until you attempt to do a restore and Bacula wants to position the tape.
You can be sure only by following the procedures suggested above and testing.

It is very difficult to supply a list of supported tape drives, or drives that are known to work with Bacula
because of limited feedback (so if you use Bacula on a different drive, please let us know). Based on user
feedback, the following drives are known to work with Bacula. A dash in a column means unknown:

OS Man. Media Model Capacity
- ADIC DLT Adic Scalar 100 DLT 100GB
- ADIC DLT Adic Fastor 22 DLT -
FreeBSD 5.4-RELEASE-p1
amd64

Certance LTO AdicCertance CL400 LTO Ultrium 2 200GB

- - DDS Compaq DDS 2,3,4 -
SuSE 8.1 Pro Compaq AIT Compaq AIT 35 LVD 35/70GB
- Exabyte - Exabyte drives less than 10 years old -
- Exabyte - Exabyte VXA drives -
- HP Travan 4 Colorado T4000S -
- HP DLT HP DLT drives -
- HP LTO HP LTO Ultrium drives -
- IBM ?? 3480, 3480XL, 3490, 3490E, 3580 and

3590 drives
-

FreeBSD 4.10 RELEASE HP DAT HP StorageWorks DAT72i -
- Overland LTO LoaderXpress LTO -
- Overland - Neo2000 -
- OnStream - OnStream drives (see below) -
FreeBSD 4.11-Release Quantum SDLT SDLT320 160/320GB
- Quantum DLT DLT-8000 40/80GB
Linux Seagate DDS-4 Scorpio 40 20/40GB

63

64 Bacula Version 5.0.3

FreeBSD 4.9 STABLE Seagate DDS-4 STA2401LW 20/40GB
FreeBSD 5.2.1 pthreads patched
RELEASE

Seagate AIT-1 STA1701W 35/70GB

Linux Sony DDS-2,3,4 - 4-40GB
Linux Tandberg - Tandbert MLR3 -
FreeBSD Tandberg - Tandberg SLR6 -
Solaris Tandberg - Tandberg SLR75 -

There is a list of supported autochangers in the Supported Autochangers chapter of this document, where
you will find other tape drives that work with Bacula.

11.1 Unsupported Tape Drives

Previously OnStream IDE-SCSI tape drives did not work with Bacula. As of Bacula version 1.33 and the
osst kernel driver version 0.9.14 or later, they now work. Please see the testing chapter as you must set a
fixed block size.

QIC tapes are known to have a number of particularities (fixed block size, and one EOF rather than two to
terminate the tape). As a consequence, you will need to take a lot of care in configuring them to make them
work correctly with Bacula.

11.2 FreeBSD Users Be Aware!!!

Unless you have patched the pthreads library on FreeBSD 4.11 systems, you will lose data when Bacula
spans tapes. This is because the unpatched pthreads library fails to return a warning status to Bacula that
the end of the tape is near. This problem is fixed in FreeBSD systems released after 4.11. Please see the
Tape Testing Chapter of this manual for important information on how to configure your tape drive for
compatibility with Bacula.

11.3 Supported Autochangers

For information on supported autochangers, please see the Autochangers Known to Work with Bacula sec-
tion of the Supported Autochangers chapter of this manual.

11.4 Tape Specifications

If you want to know what tape drive to buy that will work with Bacula, we really cannot tell you. However,
we can say that if you are going to buy a drive, you should try to avoid DDS drives. The technology is rather
old and DDS tape drives need frequent cleaning. DLT drives are generally much better (newer technology)
and do not need frequent cleaning.

Below, you will find a table of DLT and LTO tape specifications that will give you some idea of the capacity
and speed of modern tapes. The capacities that are listed are the native tape capacity without compression.
All modern drives have hardware compression, and manufacturers often list compressed capacity using a
compression ration of 2:1. The actual compression ratio will depend mostly on the data you have to backup,
but I find that 1.5:1 is a much more reasonable number (i.e. multiply the value shown in the table by 1.5 to
get a rough average of what you will probably see). The transfer rates are rounded to the nearest GB/hr.
All values are provided by various manufacturers.

Bacula Version 5.0.3 65

The Media Type is what is designated by the manufacturers and you are not required to use (but you may)
the same name in your Bacula conf resources.

Media Type Drive Type Media Capacity Transfer Rate
DDS-1 DAT 2 GB ?? GB/hr
DDS-2 DAT 4 GB ?? GB/hr
DDS-3 DAT 12 GB 5.4 GB/hr

Travan 40 Travan 20 GB ?? GB/hr
DDS-4 DAT 20 GB 11 GB/hr
VXA-1 Exabyte 33 GB 11 GB/hr
DAT-72 DAT 36 GB 13 GB/hr
DLT IV DLT8000 40 GB 22 GB/hr
VXA-2 Exabyte 80 GB 22 GB/hr

Half-high Ultrium 1 LTO 1 100 GB 27 GB/hr
Ultrium 1 LTO 1 100 GB 54 GB/hr

Super DLT 1 SDLT 220 110 GB 40 GB/hr
VXA-3 Exabyte 160 GB 43 GB/hr

Super DLT I SDLT 320 160 GB 58 GB/hr
Ultrium 2 LTO 2 200 GB 108 GB/hr

Super DLT II SDLT 600 300 GB 127 GB/hr
VXA-4 Exabyte 320 GB 86 GB/hr

Ultrium 3 LTO 3 400 GB 216 GB/hr

66 Bacula Version 5.0.3

Chapter 12

Getting Started with Bacula

If you are like me, you want to get Bacula running immediately to get a feel for it, then later you want to go
back and read about all the details. This chapter attempts to accomplish just that: get you going quickly
without all the details. If you want to skip the section on Pools, Volumes and Labels, you can always come
back to it, but please read to the end of this chapter, and in particular follow the instructions for testing
your tape drive.

We assume that you have managed to build and install Bacula, if not, you might want to first look at the
System Requirements then at the Compiling and Installing Bacula chapter of this manual.

12.1 Understanding Jobs and Schedules

In order to make Bacula as flexible as possible, the directions given to Bacula are specified in several pieces.
The main instruction is the job resource, which defines a job. A backup job generally consists of a FileSet,
a Client, a Schedule for one or several levels or times of backups, a Pool, as well as additional instructions.
Another way of looking at it is the FileSet is what to backup; the Client is who to backup; the Schedule
defines when, and the Pool defines where (i.e. what Volume).

Typically one FileSet/Client combination will have one corresponding job. Most of the directives, such as
FileSets, Pools, Schedules, can be mixed and matched among the jobs. So you might have two different Job
definitions (resources) backing up different servers using the same Schedule, the same Fileset (backing up
the same directories on two machines) and maybe even the same Pools. The Schedule will define what type
of backup will run when (e.g. Full on Monday, incremental the rest of the week), and when more than one
job uses the same schedule, the job priority determines which actually runs first. If you have a lot of jobs,
you might want to use JobDefs, where you can set defaults for the jobs, which can then be changed in the
job resource, but this saves rewriting the identical parameters for each job. In addition to the FileSets you
want to back up, you should also have a job that backs up your catalog.

Finally, be aware that in addition to the backup jobs there are restore, verify, and admin jobs, which have
different requirements.

12.2 Understanding Pools, Volumes and Labels

If you have been using a program such as tar to backup your system, Pools, Volumes, and labeling may be
a bit confusing at first. A Volume is a single physical tape (or possibly a single file) on which Bacula will
write your backup data. Pools group together Volumes so that a backup is not restricted to the length of a
single Volume (tape). Consequently, rather than explicitly naming Volumes in your Job, you specify a Pool,
and Bacula will select the next appendable Volume from the Pool and request you to mount it.

Although the basic Pool options are specified in the Director’s Pool resource, the real Pool is maintained

67

68 Bacula Version 5.0.3

in the Bacula Catalog. It contains information taken from the Pool resource (bacula-dir.conf) as well as
information on all the Volumes that have been added to the Pool. Adding Volumes to a Pool is usually done
manually with the Console program using the label command.

For each Volume, Bacula maintains a fair amount of catalog information such as the first write date/time,
the last write date/time, the number of files on the Volume, the number of bytes on the Volume, the number
of Mounts, etc.

Before Bacula will read or write a Volume, the physical Volume must have a Bacula software label so that
Bacula can be sure the correct Volume is mounted. This is usually done using the label command in the
Console program.

The steps for creating a Pool, adding Volumes to it, and writing software labels to the Volumes, may seem
tedious at first, but in fact, they are quite simple to do, and they allow you to use multiple Volumes (rather
than being limited to the size of a single tape). Pools also give you significant flexibility in your backup
process. For example, you can have a ”Daily” Pool of Volumes for Incremental backups and a ”Weekly”
Pool of Volumes for Full backups. By specifying the appropriate Pool in the daily and weekly backup Jobs,
you thereby insure that no daily Job ever writes to a Volume in the Weekly Pool and vice versa, and Bacula
will tell you what tape is needed and when.

For more on Pools, see the Pool Resource section of the Director Configuration chapter, or simply read on,
and we will come back to this subject later.

12.3 Setting Up Bacula Configuration Files

After running the appropriate ./configure command and doing a make, and a make install, if this is
the first time you are running Bacula, you must create valid configuration files for the Director, the File
daemon, the Storage daemon, and the Console programs. If you have followed our recommendations, default
configuration files as well as the daemon binaries will be located in your installation directory. In any case,
the binaries are found in the directory you specified on the --sbindir option to the ./configure command,
and the configuration files are found in the directory you specified on the --sysconfdir option.

When initially setting up Bacula you will need to invest a bit of time in modifying the default configuration
files to suit your environment. This may entail starting and stopping Bacula a number of times until you get
everything right. Please do not despair. Once you have created your configuration files, you will rarely need
to change them nor will you stop and start Bacula very often. Most of the work will simply be in changing
the tape when it is full.

12.3.1 Configuring the Console Program

The Console program is used by the administrator to interact with the Director and to manually start/stop
Jobs or to obtain Job status information.

The Console configuration file is found in the directory specified on the --sysconfdir option that you
specified on the ./configure command and by default is named bconsole.conf.

The same applies to the wxWidgets console, which is build with the --enable-bwx-console option, and
the name of the default configuration file is, in this case, bwx-console.conf.

Normally, for first time users, no change is needed to these files. Reasonable defaults are set.

Further details are in the Console configuration chapter.

Bacula Version 5.0.3 69

12.3.2 Configuring the Monitor Program

The Monitor program is typically an icon in the system tray. However, once the icon is expanded into a full
window, the administrator or user can obtain status information about the Director or the backup status on
the local workstation or any other Bacula daemon that is configured.

The image shows a tray-monitor configured for three daemons. By clicking on the radio buttons in the upper
left corner of the image, you can see the status for each of the daemons. The image shows the status for the
Storage daemon (MainSD) that is currently selected.

The Monitor configuration file is found in the directory specified on the --sysconfdir option that you
specified on the ./configure command and by default is named tray-monitor.conf. Normally, for first
time users, you just need to change the permission of this file to allow non-root users to run the Monitor, as
this application must run as the same user as the graphical environment (don’t forget to allow non-root users
to execute bacula-tray-monitor). This is not a security problem as long as you use the default settings.

More information is in the Monitor configuration chapter.

12.3.3 Configuring the File daemon

The File daemon is a program that runs on each (Client) machine. At the request of the Director, finds the
files to be backed up and sends them (their data) to the Storage daemon.

70 Bacula Version 5.0.3

The File daemon configuration file is found in the directory specified on the --sysconfdir option that you
specified on the ./configure command. By default, the File daemon’s configuration file is named bacula-
fd.conf. Normally, for first time users, no change is needed to this file. Reasonable defaults are set. However,
if you are going to back up more than one machine, you will need to install the File daemon with a unique
configuration file on each machine to be backed up. The information about each File daemon must appear
in the Director’s configuration file.

Further details are in the File daemon configuration chapter.

12.3.4 Configuring the Director

The Director is the central control program for all the other daemons. It schedules and monitors all jobs to
be backed up.

The Director configuration file is found in the directory specified on the --sysconfdir option that you
specified on the ./configure command. Normally the Director’s configuration file is named bacula-dir.conf.

In general, the only change you must make is modify the FileSet resource so that the Include configuration
directive contains at least one line with a valid name of a directory (or file) to be saved.

If you do not have a DLT tape drive, you will probably want to edit the Storage resource to contain names
that are more representative of your actual storage device. You can always use the existing names as you are
free to arbitrarily assign them, but they must agree with the corresponding names in the Storage daemon’s
configuration file.

You may also want to change the email address for notification from the default root to your email address.

Finally, if you have multiple systems to be backed up, you will need a separate File daemon or Client
specification for each system, specifying its name, address, and password. We have found that giving your
daemons the same name as your system but post fixed with -fd helps a lot in debugging. That is, if your
system name is foobaz, you would give the File daemon the name foobaz-fd. For the Director, you should
use foobaz-dir, and for the storage daemon, you might use foobaz-sd. Each of your Bacula components
must have a unique name. If you make them all the same, aside from the fact that you will not know
what daemon is sending what message, if they share the same working directory, the daemons temporary
file names will not be unique, and you will get many strange failures.

More information is in the Director configuration chapter.

12.3.5 Configuring the Storage daemon

The Storage daemon is responsible, at the Director’s request, for accepting data from a File daemon and
placing it on Storage media, or in the case of a restore request, to find the data and send it to the File
daemon.

The Storage daemon’s configuration file is found in the directory specified on the --sysconfdir option
that you specified on the ./configure command. By default, the Storage daemon’s file is named bacula-
sd.conf. Edit this file to contain the correct Archive device names for any tape devices that you have. If
the configuration process properly detected your system, they will already be correctly set. These Storage
resource name and Media Type must be the same as the corresponding ones in the Director’s configuration
file bacula-dir.conf. If you want to backup to a file instead of a tape, the Archive device must point to a
directory in which the Volumes will be created as files when you label the Volume.

Further information is in the Storage daemon configuration chapter.

Bacula Version 5.0.3 71

12.4 Testing your Configuration Files

You can test if your configuration file is syntactically correct by running the appropriate daemon with the
-t option. The daemon will process the configuration file and print any error messages then terminate. For
example, assuming you have installed your binaries and configuration files in the same directory.

cd <installation-directory>

./bacula-dir -t -c bacula-dir.conf

./bacula-fd -t -c bacula-fd.conf

./bacula-sd -t -c bacula-sd.conf

./bconsole -t -c bconsole.conf

./bwx-console -t -c bwx-console.conf

./bat -t -c bat.conf

su <normal user> -c "./bacula-tray-monitor -t -c tray-monitor.conf"

will test the configuration files of each of the main programs. If the configuration file is OK, the program
will terminate without printing anything. Please note that, depending on the configure options you choose,
some, or even all, of the three last commands will not be available on your system. If you have installed the
binaries in traditional Unix locations rather than a single file, you will need to modify the above commands
appropriately (no ./ in front of the command name, and a path in front of the conf file name).

12.5 Testing Compatibility with Your Tape Drive

Before spending a lot of time on Bacula only to find that it doesn’t work with your tape drive, please read
the Testing Your Tape Drive chapter of this manual. If you have a modern standard SCSI tape drive on
a Linux or Solaris, most likely it will work, but better test than be sorry. For FreeBSD (and probably other
xBSD flavors), reading the above mentioned tape testing chapter is a must. Also, for FreeBSD, please see
The FreeBSD Diary for a detailed description on how to make Bacula work on your system. In addition,
users of FreeBSD prior to 4.9-STABLE dated Mon Dec 29 15:18:01 2003 UTC who plan to use tape devices,
please see the file platforms/freebsd/pthreads-fix.txt in the main Bacula directory concerning important
information concerning compatibility of Bacula and your system.

12.6 Get Rid of the /lib/tls Directory

The new pthreads library /lib/tls installed by default on recent Red Hat systems running Linux ker-
nel 2.4.x is defective. You must remove it or rename it, then reboot your system before running Bacula
otherwise after a week or so of running, Bacula will either block for long periods or deadlock entirely.
You may want to use the loader environment variable override rather than removing /lib/tls. Please see
Supported Operating Systems for more information on this problem.

This problem does not occur on systems running Linux 2.6.x kernels.

12.7 Running Bacula

Probably the most important part of running Bacula is being able to restore files. If you haven’t tried
recovering files at least once, when you actually have to do it, you will be under a lot more pressure, and
prone to make errors, than if you had already tried it once.

To get a good idea how to use Bacula in a short time, we strongly recommend that you follow the example
in the Running Bacula Chapter of this manual where you will get detailed instructions on how to run Bacula.

http://www.freebsddiary.org/bacula.php

72 Bacula Version 5.0.3

12.8 Log Rotation

If you use the default bacula-dir.conf or some variation of it, you will note that it logs all the Bacula
output to a file. To avoid that this file grows without limit, we recommend that you copy the file logrotate
from the scripts/logrotate to /etc/logrotate.d/bacula. This will cause the log file to be rotated once
a month and kept for a maximum of five months. You may want to edit this file to change the default log
rotation preferences.

12.9 Log Watch

Some systems such as Red Hat and Fedora run the logwatch program every night, which does an analysis
of your log file and sends an email report. If you wish to include the output from your Bacula jobs in that
report, please look in the scripts/logwatch directory. The README file in that directory gives a brief
explanation on how to install it and what kind of output to expect.

12.10 Disaster Recovery

If you intend to use Bacula as a disaster recovery tool rather than simply a program to restore lost or
damaged files, you will want to read the Disaster Recovery Using Bacula Chapter of this manual.

In any case, you are strongly urged to carefully test restoring some files that you have saved rather than
wait until disaster strikes. This way, you will be prepared.

Chapter 13

Installing Bacula

In general, you will need the Bacula source release, and if you want to run a Windows client, you will need
the Bacula Windows binary release. However, Bacula needs certain third party packages (such as MySQL,
PostgreSQL, or SQLite to build and run properly depending on the options you specify. Normally,
MySQL and PostgreSQL are packages that can be installed on your distribution. However, if you do not
have them, to simplify your task, we have combined a number of these packages into three depkgs releases
(Dependency Packages). This can vastly simplify your life by providing you with all the necessary packages
rather than requiring you to find them on the Web, load them, and install them.

13.1 Source Release Files

Beginning with Bacula 1.38.0, the source code has been broken into four separate tar files each corresponding
to a different module in the Bacula SVN. The released files are:

bacula-5.0.0.tar.gz This is the primary source code release for Bacula. On each release the version number
(5.0.0) will be updated.

bacula-docs-5.0.0.tar.bz2 This file contains a copy of the docs directory with the documents prebuild.
English HTML directory, single HTML file, and pdf file. The French, German, Spanish translations
are in progress, but are not built.

bacula-gui-5.0.0.tar.gz This file contains the non-core GUI programs. Currently, it contains bacula-web,
a PHP program for producing management viewing of your Bacula job status in a browser; and
bimagemgr a browser program for burning CDROM images with Bacula Volumes.

bacula-rescue-5.0.0.tar.gz This is the Bacula Rescue USB key code. Note, the version number of this
package is not always tied to the Bacula release version, so it may be different. Using this code, you
can create a USB key with your system configuration and containing a statically linked version of the
File daemon. This can permit you to easily repartition and reformat your hard disks and reload your
system with Bacula in the case of a hard disk failure.

win32bacula-5.0.0.exe This file is the 32 bit Windows installer for installing the Windows client (File
daemon) on a Windows machine. This client will also run on 64 bit Windows machines, but VSS
support is not available if you are running a 64 bit version of Windows. This installer installs only the
FD, the Director and Storage daemon are not included.

win64bacula-5.0.0.exe This file is the 64 bit Windows installer for installing the Windows client (File
daemon) on a Windows machine. This client will only run on 64 bit Windows OS machines. It will
not run on 32 bit machines or 32 bit Windows OSes. The win64bacula release is necessary for Volume
Shadow Copy (VSS) to work on Win64 OSes. This installer installs only the FD, the Director and
Storage daemon are not included.

73

74 Bacula Version 5.0.3

13.2 Upgrading Bacula

If you are upgrading from one Bacula version to another, you should first carefully read the ReleaseNotes
of all major versions between your current version and the version to which you are upgrading. In many
upgrades, especially for minor patch upgrades (e.g. between 3.0.0 and 3.0.1) there will be no database
upgrade, and hence the process is rather simple.

With version 3.0.0 and later, you must ensure that on any one machine that all components of Bacula are
running on exactly the same version. Prior to version 3.0.0, it was possible to run a lower level FD with a
newer Director and SD. This is no longer the case.

As always, we attempt to support older File daemons. This avoids the need to do a simultaneous upgrade
of many machines. For exactly what older versions of the FD are supported, please see the ReleaseNotes for
the new version. In any case, you must always upgrade both the Director and the Storage daemon at the
same time, and you must also upgrade any File daemon that is running on the same machine as a Director
or a Storage daemon (see the prior paragraph).

If the Bacula catalog database has been upgraded (as it is almost every major release), you will either need
to reinitialize your database starting from scratch (not normally a good idea), or save an ASCII copy of your
database, then proceed to upgrade it. If you are upgrading two major versions (e.g. 1.36 to 2.0) then life
will be more complicated because you must do two database upgrades. See below for more on this.

Upgrading the catalog is normally done after Bacula is build and installed by:

cd <installed-scripts-dir> (default /etc/bacula)

./update_bacula_tables

This update script can also be find in the Bacula source src/cats directory.

If there are several database upgrades between your version and the version to which you are upgrading,
you will need to apply each database upgrade script. For your convenience, you can find all the old upgrade
scripts in the upgradedb directory of the source code. You will need to edit the scripts to correspond to
your system configuration. The final upgrade script, if any, can be applied as noted above.

If you are upgrading from one major version to another, you will need to replace all your components at the
same time as generally the inter-daemon protocol will change. However, within any particular release (e.g.
version 1.32.x) unless there is an oversight or bug, the daemon protocol will not change. If this is confusing,
simply read the ReleaseNotes very carefully as they will note if all daemons must be upgraded at the same
time.

Finally, please note that in general it is not necessary or desirable to do a make uninstall before doing an
upgrade providing you are careful not to change the installation directories. In fact, if you do so, you will
most likely delete all your conf files, which could be disastrous. The normal procedure during an upgrade is
simply:

./configure (your options)

make

make install

In general none of your existing .conf or .sql files will be overwritten, and you must do both the make and
make install commands, a make install without the preceding make will not work.

For additional information on upgrading, please see the Upgrading Bacula Versions in the Tips chapter of
this manual.

Bacula Version 5.0.3 75

13.3 Releases Numbering

Every Bacula release whether beta or production has a different number as well as the date of the release
build. The numbering system follows traditional Open Source conventions in that it is of the form.

major.minor.release

For example:

1.38.11

where each component (major, minor, patch) is a number. The major number is currently 1 and normally
does not change very frequently. The minor number starts at 0 and increases each for each production release
by 2 (i.e. it is always an even number for a production release), and the patch number is starts at zero each
time the minor number changes. The patch number is increased each time a bug fix (or fixes) is released to
production.

So, as of this date (10 September 2006), the current production Bacula release is version 1.38.11. If there
are bug fixes, the next release will be 1.38.12 (i.e. the patch number has increased by one).

For all patch releases where the minor version number does not change, the database and all the daemons
will be compatible. That means that you can safely run a 1.38.0 Director with a 1.38.11 Client. Of course,
in this case, the Director may have bugs that are not fixed. Generally, within a minor release (some minor
releases are not so minor), all patch numbers are officially released to production. This means that while
the current Bacula version is 1.38.11, versions 1.38.0, 1.38.1, ... 1.38.10 have all been previously released.

When the minor number is odd, it indicates that the package is under development and thus may not
be stable. For example, while the current production release of Bacula is currently 1.38.11, the current
development version is 1.39.22. All patch versions of the development code are available in the SVN (source
repository). However, not all patch versions of the development code (odd minor version) are officially
released. When they are released, they are released as beta versions (see below for a definition of what beta
means for Bacula releases).

In general when the minor number increases from one production release to the next (i.e. 1.38.x to 1.40.0),
the catalog database must be upgraded, the Director and Storage daemon must always be on the same minor
release number, and often (not always), the Clients must also be on the same minor release. As often as
possible, we attempt to make new releases that are downwards compatible with prior clients, but this is not
always possible. You must check the release notes. In general, you will have fewer problems if you always
run all the components on the same minor version number (i.e. all either 1.38.x or 1.40.x but not mixed).

Beta Releases

Towards the end of the development cycle, which typically runs one year from a major release to another,
there will be several beta releases of the development code prior to a production release. As noted above,
beta versions always have odd minor version numbers (e.g 1.37.x or 1.39.x). The purpose of the beta releases
is to allow early adopter users to test the new code. Beta releases are made with the following considerations:

• The code passes the regression testing on FreeBSD, Linux, and Solaris machines.

• There are no known major bugs, or on the rare occasion that there are, they will be documented or
already in the bugs database.

• Some of the new code/features may not yet be tested.

• Bugs are expected to be found, especially in the new code before the final production release.

• The code will have been run in production in at least one small site (mine).

76 Bacula Version 5.0.3

• The Win32 client will have been run in production at least one night at that small site.

• The documentation in the manual is unlikely to be complete especially for the new features, and the
Release Notes may not be fully organized.

• Beta code is not generally recommended for everyone, but rather for early adopters.

13.4 Dependency Packages

As discussed above, we have combined a number of third party packages that Bacula might need into the
depkgs release. You can, of course, get the latest packages from the original authors or from your operating
system supplier. The locations of where we obtained the packages are in the README file in each package.
However, be aware that the packages in the depkgs files have been tested by us for compatibility with Bacula.

Typically, a dependency package will be named depkgs-ddMMMyy.tar.gz where dd is the day we release
it, MMM is the abbreviated month (e.g. Jan), and yy is the year. An actual example is: depkgs-
18Dec.tar.gz. To install and build this package (if needed), you do the following:

1. Create a bacula directory, into which you will place both the Bacula source as well as the dependency
package.

2. Detar the depkgs into the bacula directory.

3. cd bacula/depkgs

4. make

Although the exact composition of the dependency packages may change from time to time, the current
makeup is the following:

3rd Party Package depkgs depkgs-qt
SQLite3 X
mtx X
qt4 X

Note, some of these packages are quite large, so that building them can be a bit time consuming. The above
instructions will build all the packages contained in the directory. However, when building Bacula, it will
take only those pieces that it actually needs.

Alternatively, you can make just the packages that are needed. For example,

cd bacula/depkgs

make sqlite

will configure and build only the SQLite package.

You should build the packages that you will require in depkgs a prior to configuring and building Bacula,
since Bacula will need them during the build process.

Note, the depkgs-qt package is required for building bat, because bat is currently built with Qt version 4.3.4.
It can be built with other Qt versions, but that almost always creates problems or introduces instabilities.

You can build the depkgs-qt with the following:

cd bacula

tar xfvz depkgs-qt-28Jul09.tar.gz

Bacula Version 5.0.3 77

cd depkgs-qt

make qt4

source qt4-path

Doing the source qt4-path defines the following environment variables:

QTDIR

QTLIB

QTINC

Each one should point to a specific location in the depkgs-qt package that you loaded. It also puts the
depkgs-qt/qt4/bin directory on your path before all other directories. This ensures that the bat build will
use your Qt 4.3.4 library rather than any that might be on your system.

Before running your Bacula build, please make sure that qmake-qt4 is not on your path. If it is please
rename it. If you don’t do this, Bacula will attempt to build with any Qt4 package installed on your system
rather than the one you just built. If you logoff and log back in, you must re-source the depkgs-qt/qt4-patch
file before attempting to rebuild the bat part of Bacula.

For more information on the depkgs-qt package, please read the INSTALL file in the main directory of that
package. If you are going to build Qt4 using depkgs-qt, you must source the qt4-paths file included in the
package prior to building Bacula. Please read the INSTALL file for more details.

Even if you do not use SQLite, you might find it worthwhile to build mtx because the tapeinfo program that
comes with it can often provide you with valuable information about your SCSI tape drive (e.g. compression,
min/max block sizes, ...). Note, most distros provide mtx as part of their release.

The depkgs1 package is depreciated and previously contained readline, which should be available on all
operating systems.

The depkgs-win32 package is deprecated and no longer used in Bacula version 1.39.x and later. It was
previously used to build the native Win32 client program, but this program is now built on Linux systems
using cross-compiling. All the tools and third party libraries are automatically downloaded by executing the
appropriate scripts. See src/win32/README.mingw32 for more details.

13.5 Supported Operating Systems

Please see the Supported Operating Systems section of the QuickStart chapter of this manual.

13.6 Building Bacula from Source

The basic installation is rather simple.

1. Install and build any depkgs as noted above. This should be unnecessary on most modern Operating
Systems.

2. Configure and install MySQL or PostgreSQL (if desired). Installing and Configuring MySQL Phase I
or Installing and Configuring PostgreSQL Phase I. If you are installing from rpms, and are using
MySQL, please be sure to install mysql-devel, so that the MySQL header files are available while
compiling Bacula. In addition, the MySQL client library mysqlclient requires the gzip compression
library libz.a or libz.so. If you are using rpm packages, these libraries are in the libz-devel package.
On Debian systems, you will need to load the zlib1g-dev package. If you are not using rpms or debs,
you will need to find the appropriate package for your system.

Note, if you already have a running MySQL or PostgreSQL on your system, you can skip this phase
provided that you have built the thread safe libraries. And you have already installed the additional
rpms noted above.

78 Bacula Version 5.0.3

SQLite is not supported on Solaris. This is because it frequently fails with bus errors. However SQLite3
may work.

3. Detar the Bacula source code preferably into the bacula directory discussed above.

4. cd to the directory containing the source code.

5. ./configure (with appropriate options as described below). Any path names you specify as options on
the ./configure command line must be absolute paths and not relative.

6. Check the output of ./configure very carefully, especially the Install binaries and Install config direc-
tories. If they are not correct, please rerun ./configure until they are. The output from ./configure is
stored in config.out and can be re-displayed at any time without rerunning the ./configure by doing
cat config.out.

7. If after running ./configure once, you decide to change options and re-run it, that is perfectly fine, but
before re-running it, you should run:

make distclean

so that you are sure to start from scratch and not have a mixture of the two options. This is because
./configure caches much of the information. The make distclean is also critical if you move the source
directory from one machine to another. If the make distclean fails, just ignore it and continue on.

8. make If you get errors while linking in the Storage daemon directory (src/stored), it is probably because
you have not loaded the static libraries on your system. I noticed this problem on a Solaris system. To
correct it, make sure that you have not added - -enable-static-tools to the ./configure command.

If you skip this step (make) and proceed immediately to the make install you are making two serious
errors: 1. your install will fail because Bacula requires a make before a make install. 2. you are
depriving yourself of the chance to make sure there are no errors before beginning to write files to your
system directories.

9. make install Please be sure you have done a make before entering this command, and that everything
has properly compiled and linked without errors.

10. If you are new to Bacula, we strongly recommend that you skip the next step and use the default
configuration files, then run the example program in the next chapter, then come back and modify
your configuration files to suit your particular needs.

11. Customize the configuration files for each of the three daemons (Directory, File, Storage) and for the
Console program. For the details of how to do this, please see Setting Up Bacula Configuration Files
in the Configuration chapter of this manual. We recommend that you start by modifying the default
configuration files supplied, making the minimum changes necessary. Complete customization can be
done after you have Bacula up and running. Please take care when modifying passwords, which were
randomly generated, and theNames as the passwords and names must agree between the configuration
files for security reasons.

12. Create the Bacula MySQL database and tables (if using MySQL)
Installing and Configuring MySQL Phase II or create the Bacula PostgreSQL database
and tables Configuring PostgreSQL II or alternatively if you are using SQLite
Installing and Configuring SQLite Phase II.

13. Start Bacula (./bacula start) Note. the next chapter shows you how to do this in detail.

14. Interface with Bacula using the Console program

15. For the previous two items, please follow the instructions in the Running Bacula chapter of this manual,
where you will run a simple backup and do a restore. Do this before you make heavy modifications
to the configuration files so that you are sure that Bacula works and are familiar with it. After that
changing the conf files will be easier.

16. If after installing Bacula, you decide to ”move it”, that is to install it in a different set of directories,
proceed as follows:

Bacula Version 5.0.3 79

make uninstall

make distclean

./configure (your-new-options)

make

make install

If all goes well, the ./configure will correctly determine which operating system you are running and
configure the source code appropriately. Currently, FreeBSD, Linux (Red Hat), and Solaris are supported.
The Bacula client (File daemon) is reported to work with MacOS X 10.3 is if readline support is not enabled
(default) when building the client.

If you install Bacula on more than one system, and they are identical, you can simply transfer the source
tree to that other system and do a ”make install”. However, if there are differences in the libraries or OS
versions, or you wish to install on a different OS, you should start from the original compress tar file. If you
do transfer the source tree, and you have previously done a ./configure command, you MUST do:

make distclean

prior to doing your new ./configure. This is because the GNU autoconf tools cache the configuration, and
if you re-use a configuration for a Linux machine on a Solaris, you can be sure your build will fail. To avoid
this, as mentioned above, either start from the tar file, or do a ”make distclean”.

In general, you will probably want to supply a more complicated configure statement to ensure that the
modules you want are built and that everything is placed into the correct directories.

For example, on Fedora, Red Hat, or SuSE one could use the following:

CFLAGS="-g -Wall" \

./configure \

--sbindir=$HOME/bacula/bin \

--sysconfdir=$HOME/bacula/bin \

--with-pid-dir=$HOME/bacula/bin/working \

--with-subsys-dir=$HOME/bacula/bin/working \

--with-mysql \

--with-working-dir=$HOME/bacula/bin/working \

--with-dump-email=$USER

The advantage of using the above configuration to start is that everything will be put into a single directory,
which you can later delete once you have run the examples in the next chapter and learned how Bacula
works. In addition, the above can be installed and run as non-root.

For the developer’s convenience, I have added a defaultconfig script to the examples directory. This script
contains the statements that you would normally use, and each developer/user may modify them to suit his
needs. You should find additional useful examples in this directory as well.

The --enable-conio or --enable-readline options are useful because they provide a command line history,
editing capability for the Console program and tab completion on various option. If you have included either
option in the build, either the termcap or the ncurses package will be needed to link. On most systems,
including Red Hat and SuSE, you should include the ncurses package. If Bacula’s configure process finds
the ncurses libraries, it will use those rather than the termcap library. On some systems, such as SuSE, the
termcap library is not in the standard library directory. As a consequence, the option may be disabled or
you may get an error message such as:

/usr/lib/gcc-lib/i586-suse-linux/3.3.1/.../ld:

cannot find -ltermcap

collect2: ld returned 1 exit status

while building the Bacula Console. In that case, you will need to set the LDFLAGS environment variable
prior to building.

80 Bacula Version 5.0.3

export LDFLAGS="-L/usr/lib/termcap"

The same library requirements apply if you wish to use the readline subroutines for command line editing,
history and tab completion or if you are using a MySQL library that requires encryption. If you need
encryption, you can either export the appropriate additional library options as shown above or, alternatively,
you can include them directly on the ./configure line as in:

LDFLAGS="-lssl -lcyrpto" \

./configure <your-options>

On some systems such as Mandriva, readline tends to gobble up prompts, which makes it totally useless. If
this happens to you, use the disable option, or if you are using version 1.33 and above try using --enable-
conio to use a built-in readline replacement. You will still need either the termcap or the ncurses library,
but it is unlikely that the conio package will gobble up prompts.

readline is no longer supported after version 1.34. The code within Bacula remains, so it should be usable,
and if users submit patches for it, we will be happy to apply them. However, due to the fact that each
version of readline seems to be incompatible with previous versions, and that there are significant differences
between systems, we can no longer afford to support it.

13.7 What Database to Use?

Before building Bacula you need to decide if you want to use SQLite, MySQL, or PostgreSQL. If you are
not already running MySQL or PostgreSQL, you might want to start by testing with SQLite (not supported
on Solaris). This will greatly simplify the setup for you because SQLite is compiled into Bacula an requires
no administration. It performs well and is suitable for small to medium sized installations (maximum 10-20
machines). However, we should note that a number of users have had unexplained database corruption with
SQLite. For that reason, we recommend that you install either MySQL or PostgreSQL for production work.

If you wish to use MySQL as the Bacula catalog, please see the Installing and Configuring MySQL chapter
of this manual. You will need to install MySQL prior to continuing with the configuration of Bacula. MySQL
is a high quality database that is very efficient and is suitable for any sized installation. It is slightly more
complicated than SQLite to setup and administer because it has a number of sophisticated features such as
userids and passwords. It runs as a separate process, is truly professional and can manage a database of any
size.

If you wish to use PostgreSQL as the Bacula catalog, please see the Installing and Configuring PostgreSQL
chapter of this manual. You will need to install PostgreSQL prior to continuing with the configuration of
Bacula. PostgreSQL is very similar to MySQL, though it tends to be slightly more SQL92 compliant and
has many more advanced features such as transactions, stored procedures, and the such. It requires a certain
knowledge to install and maintain.

If you wish to use SQLite as the Bacula catalog, please see Installing and Configuring SQLite chapter of this
manual. SQLite is not supported on Solaris.

13.8 Quick Start

There are a number of options and important considerations given below that you can skip for the moment
if you have not had any problems building Bacula with a simplified configuration as shown above.

If the ./configure process is unable to find specific libraries (e.g. libintl, you should ensure that the appropriate
package is installed on your system. Alternatively, if the package is installed in a non-standard location (as
far as Bacula is concerned), then there is generally an option listed below (or listed with ”./configure - -help”
that will permit you to specify the directory that should be searched. In other cases, there are options that
will permit you to disable to feature (e.g. - -disable-nls).

Bacula Version 5.0.3 81

If you want to dive right into it, we recommend you skip to the next chapter, and run the example program.
It will teach you a lot about Bacula and as an example can be installed into a single directory (for easy
removal) and run as non-root. If you have any problems or when you want to do a real installation, come
back to this chapter and read the details presented below.

13.9 Configure Options

The following command line options are available for configure to customize your installation.

-prefix=<patch> This option is meant to allow you to direct where the architecture independent files
should be placed. However, we find this a somewhat vague concept, and so we have not implemented
this option other than what ./configure does by default. As a consequence, we suggest that you avoid
it. We have provided options that allow you to explicitly specify the directories for each of the major
categories of installation files.

-sbindir=<binary-path> Defines where the Bacula binary (executable) files will be placed during a
make install command.

-sysconfdir=<config-path> Defines where the Bacula configuration files should be placed during amake
install command.

-mandir=<path> Note, as of Bacula version 1.39.14, the meaning of any path specified on this option
is change from prior versions. It now specifies the top level man directory. Previously the mandir
specified the full path to where you wanted the man files installed. The man files will be installed in
gzip’ed format under mandir/man1 and mandir/man8 as appropriate. For the install to succeed you
must have gzip installed on your system.

By default, Bacula will install the Unix man pages in /usr/share/man/man1 and
/usr/share/man/man8. If you wish the man page to be installed in a different location, use
this option to specify the path. Note, the main HTML and PDF Bacula documents are in a separate
tar file that is not part of the source distribution.

-datadir=<path> If you translate Bacula or parts of Bacula into a different language you may specify
the location of the po files using the -datadir option. You must manually install any po files as Bacula
does not (yet) automatically do so.

-disable-ipv6

-enable-smartalloc This enables the inclusion of the Smartalloc orphaned buffer detection code. This
option is highly recommended. Because we never build without this option, you may experience
problems if it is not enabled. In this case, simply re-enable the option. We strongly recommend
keeping this option enabled as it helps detect memory leaks. This configuration parameter is used
while building Bacula

-enable-bat If you have Qt4 ¿= 4.3.4 installed on your computer including the libqt4 and libqt4-devel
(libqt4-dev on Debian) libraries, and you want to use the Bacula Administration Tool (bat) GUI
Console interface to Bacula, you must specify this option. Doing so will build everything in the
src/qt-console directory. The build with enable-bat will work only with a full Bacula build (i.e. it
will not work with a client-only build).

Qt4 is available on OpenSUSE 10.2, CentOS 5, Fedora, and Debian. If it is not available on your
system, you can download the depkgs-qt package from the Bacula Source Forge download area and
build it. See the INSTALL file in that package for more details. In particular to use the Qt4 built by
depkgs-qt you must source the file qt4-paths.

-enable-batch-insert This option enables batch inserts of the attribute records (default) in the catalog
database, which is much faster (10 times or more) than without this option for large numbers of files.
However, this option will automatically be disabled if your SQL libraries are not thread safe. If you
find that batch mode is not enabled on your Bacula installation, then your database most likely does
not support threads.

SQLite2 is not thread safe. Batch insert cannot be enabled when using SQLite2

82 Bacula Version 5.0.3

On most systems, MySQL, PostgreSQL and SQLite3 are thread safe.

To verify that your PostgreSQL is thread safe, you can try this (change the path to point to your
particular installed libpq.a; these commands were issued on FreeBSD 6.2):

$ nm /usr/local/lib/libpq.a | grep PQputCopyData

00001b08 T PQputCopyData

$ nm /usr/local/lib/libpq.a | grep mutex

U pthread_mutex_lock

U pthread_mutex_unlock

U pthread_mutex_init

U pthread_mutex_lock

U pthread_mutex_unlock

The above example shows a libpq that contains the required function PQputCopyData and is thread
enabled (i.e. the pthread mutex* entries). If you do not see PQputCopyData, your version of Post-
greSQL is too old to allow batch insert. If you do not see the mutex entries, then thread support
has not been enabled. Our tests indicate you usually need to change the configuration options and
recompile/reinstall the PostgreSQL client software to get thread support.

Bacula always links to the thread safe MySQL libraries.

Running with Batch Insert turned on is recommended because it can significantly improve attribute
insertion times. However, it does put a significantly larger part of the work on your SQL engine, so you
may need to pay more attention to tuning it. In particular, Batch Insert can require large temporary
table space, and consequently, the default location (often /tmp) may run out of space causing errors.
For MySQL, the location is set in my.conf with ”tmpdir”. You may also want to increase the memory
available to your SQL engine to further improve performance during Batch Inserts.

-enable-bwx-console If you have wxWidgets installed on your computer and you want to use the wxWid-
gets GUI Console interface to Bacula, you must specify this option. Doing so will build everything in
the src/wx-console directory. This could also be useful to users who want a GUI Console and don’t
want to install QT, as wxWidgets can work with GTK+, Motif or even X11 libraries.

-enable-tray-monitor If you have GTK installed on your computer, you run a graphical environment or
a window manager compatible with the FreeDesktop system tray standard (like KDE and GNOME)
and you want to use a GUI to monitor Bacula daemons, you must specify this option. Doing so will
build everything in the src/tray-monitor directory. Note, due to restrictions on what can be linked
with GPLed code, we were forced to remove the egg code that dealt with the tray icons and replace it
by calls to the GTK+ API, and unfortunately, the tray icon API necessary was not implemented until
GTK version 2.10 or later.

-enable-static-tools This option causes the linker to link the Storage daemon utility tools (bls, bextract,
and bscan) statically. This permits using them without having the shared libraries loaded. If you
have problems linking in the src/stored directory, make sure you have not enabled this option, or
explicitly disable static linking by adding --disable-static-tools.

-enable-static-fd This option causes the make process to build a static-bacula-fd in addition to the
standard File daemon. This static version will include statically linked libraries and is required for the
Bare Metal recovery. This option is largely superseded by using make static-bacula-fd from with
in the src/filed directory. Also, the --enable-client-only option described below is useful for just
building a client so that all the other parts of the program are not compiled.

When linking a static binary, the linker needs the static versions of all the libraries that are used, so
frequently users will experience linking errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The second thing to do is the make sure
you do not specify -openssl or -with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you will need to load additional
static libraries.

-enable-static-sd This option causes the make process to build a static-bacula-sd in addition to the
standard Storage daemon. This static version will include statically linked libraries and could be
useful during a Bare Metal recovery.

When linking a static binary, the linker needs the static versions of all the libraries that are used, so
frequently users will experience linking errors when this option is used. The first thing to do is to make

Bacula Version 5.0.3 83

sure you have the static glibc library installed on your system. The second thing to do is the make sure
you do not specify -openssl or -with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you will need to load additional
static libraries.

-enable-static-dir This option causes the make process to build a static-bacula-dir in addition to the
standard Director. This static version will include statically linked libraries and could be useful during
a Bare Metal recovery.

When linking a static binary, the linker needs the static versions of all the libraries that are used, so
frequently users will experience linking errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The second thing to do is the make sure
you do not specify -openssl or -with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you will need to load additional
static libraries.

-enable-static-cons This option causes the make process to build a static-console in addition to the
standard console. This static version will include statically linked libraries and could be useful during
a Bare Metal recovery.

When linking a static binary, the linker needs the static versions of all the libraries that are used, so
frequently users will experience linking errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The second thing to do is the make sure
you do not specify -openssl or -with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you will need to load additional
static libraries.

-enable-client-only This option causes the make process to build only the File daemon and the libraries
that it needs. None of the other daemons, storage tools, nor the console will be built. Likewise a make
install will then only install the File daemon. To cause all daemons to be built, you will need to do
a configuration without this option. This option greatly facilitates building a Client on a client only
machine.

When linking a static binary, the linker needs the static versions of all the libraries that are used, so
frequently users will experience linking errors when this option is used. The first thing to do is to make
sure you have the static glibc library installed on your system. The second thing to do is the make sure
you do not specify -openssl or -with-python on your ./configure statement as these options require
additional libraries. You may be able to enable those options, but you will need to load additional
static libraries.

-enable-build-dird This option causes the make process to build the Director and the Director’s tools.
By default, this option is on, but you may turn it off by using -disable-build-dird to prevent the
Director from being built.

-enable-build-stored This option causes the make process to build the Storage daemon. By default, this
option is on, but you may turn it off by using -disable-build-stored to prevent the Storage daemon
from being built.

-enable-largefile This option (default) causes Bacula to be built with 64 bit file address support if it is
available on your system. This permits Bacula to read and write files greater than 2 GBytes in size.
You may disable this feature and revert to 32 bit file addresses by using --disable-largefile.

-disable-nls By default, Bacula uses the GNU Native Language Support (NLS) libraries. On some ma-
chines, these libraries may not be present or may not function correctly (especially on non-Linux
implementations). In such cases, you may specify -disable-nls to disable use of those libraries. In
such a case, Bacula will revert to using English.

-disable-ipv6 By default, Bacula enables IPv6 protocol. On some systems, the files for IPv6 may exist,
but the functionality could be turned off in the kernel. In that case, in order to correctly build Bacula,
you will explicitly need to use this option so that Bacula does not attempt to reference OS function
calls that do not exist.

-with-sqlite3=<sqlite3-path> This enables use of the SQLite version 3.x database. The sqlite3-path
is not normally specified as Bacula looks for the necessary components in a standard location (dep-
kgs/sqlite3). See Installing and Configuring SQLite chapter of this manual for more details. SQLite3
is not supported on Solaris.

84 Bacula Version 5.0.3

-with-mysql=<mysql-path> This enables building of the Catalog services for Bacula. It assumes that
MySQL is running on your system, and expects it to be installed in the mysql-path that you specify.
Normally, if MySQL is installed in a standard system location, you can simply use -with-mysql
with no path specification. If you do use this option, please proceed to installing MySQL in the
Installing and Configuring MySQL chapter before proceeding with the configuration.

See the note below under the -with-postgresql item.

-with-postgresql=<path> This provides an explicit path to the PostgreSQL libraries if Bacula cannot
find it by default. Normally to build with PostgreSQL, you would simply use -with-postgresql.

Note, for Bacula to be configured properly, you must specify one of the four database options supported.
That is: -with-sqlite, -with-sqlite3, -with-mysql, or -with-postgresql, otherwise the ./configure will fail.

-with-openssl=<path> This configuration option is necessary if you want to enable TLS (ssl), which
encrypts the communications within Bacula or if you want to use File Daemon PKI data encryption.
Normally, the path specification is not necessary since the configuration searches for the OpenSSL
libraries in standard system locations. However, you must ensure that all the libraries are loaded
including libssl-dev or the equivalent on your system. Enabling OpenSSL in Bacula permits secure
communications between the daemons and/or data encryption in the File daemon. For more informa-
tion on using TLS, please see the Bacula TLS – Communications Encryption chapter of this manual.
For more information on using PKI data encryption, please see the Bacula PKI – Data Encryption
chapter of this manual.

If you get errors linking, you need to load the development libraries, or you need to disable SSL by
setting without-openssl.

-with-python=<path> This option enables Bacula support for Python. If no path is supplied, configure
will search the standard library locations for Python 2.2, 2.3, 2.4, or 2.5. If it cannot find the library,
you will need to supply a path to your Python library directory. Please see the Python chapter for the
details of using Python scripting.

-with-libintl-prefix=<DIR> This option may be used to tell Bacula to search DIR/include and DIR/lib
for the libintl headers and libraries needed for Native Language Support (NLS).

-enable-conio Tells Bacula to enable building the small, light weight readline replacement routine. It is
generally much easier to configure than readline, although, like readline, it needs either the termcap
or ncurses library.

-with-readline=<readline-path> Tells Bacula where readline is installed. Normally, Bacula will find
readline if it is in a standard library. If it is not found and no -with-readline is specified, readline
will be disabled. This option affects the Bacula build. Readline provides the Console program with a
command line history and editing capability and is no longer supported, so you are on your own if you
have problems.

-enable-readline Tells Bacula to enable readline support. It is normally disabled due to the large number
of configuration problems and the fact that the package seems to change in incompatible ways from
version to version.

-with-tcp-wrappers=<path> This specifies that you want TCP wrappers (man hosts access(5)) com-
piled in. The path is optional since Bacula will normally find the libraries in the standard locations.
This option affects the Bacula build. In specifying your restrictions in the /etc/hosts.allow or
/etc/hosts.deny files, do not use the twist option (hosts options(5)) or the Bacula process will be
terminated. Note, when setting up your /etc/hosts.allow or /etc/hosts.deny, you must identify
the Bacula daemon in question with the name you give it in your conf file rather than the name of the
executable.

For more information on configuring and testing TCP wrappers, please see the
Configuring and Testing TCP Wrappers section in the Security Chapter.

On SuSE, the libwrappers libraries needed to link Bacula are contained in the tcpd-devel package. On
Red Hat, the package is named tcp wrappers.

-with-archivedir=<path> The directory used for disk-based backups. Default value is /tmp. This
parameter sets the default values in the bacula-dir.conf and bacula-sd.conf configuration files. For
example, it sets the Where directive for the default restore job and the Archive Device directive for
the FileStorage device.

This option is designed primarily for use in regression testing. Most users can safely ignore this option.

Bacula Version 5.0.3 85

-with-working-dir=<working-directory-path> This option is mandatory and specifies a directory
into which Bacula may safely place files that will remain between Bacula executions. For example, if
the internal database is used, Bacula will keep those files in this directory. This option is only used
to modify the daemon configuration files. You may also accomplish the same thing by directly editing
them later. The working directory is not automatically created by the install process, so you must
ensure that it exists before using Bacula for the first time.

-with-base-port=<port=number> In order to run, Bacula needs three TCP/IP ports (one for the
Bacula Console, one for the Storage daemon, and one for the File daemon). The --with-baseport
option will automatically assign three ports beginning at the base port address specified. You may also
change the port number in the resulting configuration files. However, you need to take care that the
numbers correspond correctly in each of the three daemon configuration files. The default base port is
9101, which assigns ports 9101 through 9103. These ports (9101, 9102, and 9103) have been officially
assigned to Bacula by IANA. This option is only used to modify the daemon configuration files. You
may also accomplish the same thing by directly editing them later.

-with-dump-email=<email-address> This option specifies the email address where any core dumps
should be set. This option is normally only used by developers.

-with-pid-dir=<PATH> This specifies where Bacula should place the process id file during execution.
The default is: /var/run. This directory is not created by the install process, so you must ensure
that it exists before using Bacula the first time.

-with-subsys-dir=<PATH> This specifies where Bacula should place the subsystem lock file during
execution. The default is /var/run/subsys. Please make sure that you do not specify the same
directory for this directory and for the sbindir directory. This directory is used only within the
autostart scripts. The subsys directory is not created by the Bacula install, so you must be sure to
create it before using Bacula.

-with-dir-password=<Password> This option allows you to specify the password used to access the
Director (normally from the Console program). If it is not specified, configure will automatically create
a random password.

-with-fd-password=<Password> This option allows you to specify the password used to access the
File daemon (normally called from the Director). If it is not specified, configure will automatically
create a random password.

-with-sd-password=<Password> This option allows you to specify the password used to access the
Storage daemon (normally called from the Director). If it is not specified, configure will automatically
create a random password.

-with-dir-user=<User> This option allows you to specify the Userid used to run the Director. The
Director must be started as root, but doesn’t need to run as root, and after doing preliminary ini-
tializations, it can ”drop” to the UserId specified on this option. If you specify this option, you must
create the User prior to running make install, because the working directory owner will be set to
User.

-with-dir-group=<Group> This option allows you to specify the GroupId used to run the Director.
The Director must be started as root, but doesn’t need to run as root, and after doing preliminary
initializations, it can ”drop” to the GroupId specified on this option. If you specify this option, you
must create the Group prior to running make install, because the working directory group will be set
to Group.

-with-sd-user=<User> This option allows you to specify the Userid used to run the Storage daemon.
The Storage daemon must be started as root, but doesn’t need to run as root, and after doing prelim-
inary initializations, it can ”drop” to the UserId specified on this option. If you use this option, you
will need to take care that the Storage daemon has access to all the devices (tape drives, ...) that it
needs.

-with-sd-group=<Group> This option allows you to specify the GroupId used to run the Storage
daemon. The Storage daemon must be started as root, but doesn’t need to run as root, and after
doing preliminary initializations, it can ”drop” to the GroupId specified on this option.

86 Bacula Version 5.0.3

-with-fd-user=<User> This option allows you to specify the Userid used to run the File daemon. The
File daemon must be started as root, and in most cases, it needs to run as root, so this option is used
only in very special cases, after doing preliminary initializations, it can ”drop” to the UserId specified
on this option.

-with-fd-group=<Group> This option allows you to specify the GroupId used to run the File daemon.
The File daemon must be started as root, and in most cases, it must be run as root, however, after
doing preliminary initializations, it can ”drop” to the GroupId specified on this option.

-with-mon-dir-password=<Password> This option allows you to specify the password used to access
the Directory from the monitor. If it is not specified, configure will automatically create a random
password.

-with-mon-fd-password=<Password> This option allows you to specify the password used to access
the File daemon from the Monitor. If it is not specified, configure will automatically create a random
password.

-with-mon-sd-password=<Password> This option allows you to specify the password used to access
the Storage daemon from the Monitor. If it is not specified, configure will automatically create a
random password.

-with-db-name=<database-name> This option allows you to specify the database name to be used
in the conf files. The default is bacula.

-with-db-user=<database-user> This option allows you to specify the database user name to be used
in the conf files. The default is bacula.

Note, many other options are presented when you do a ./configure --help, but they are not implemented.

13.10 Recommended Options for Most Systems

For most systems, we recommend starting with the following options:

./configure \

--enable-smartalloc \

--sbindir=$HOME/bacula/bin \

--sysconfdir=$HOME/bacula/bin \

--with-pid-dir=$HOME/bacula/bin/working \

--with-subsys-dir=$HOME/bacula/bin/working \

--with-mysql=$HOME/mysql \

--with-working-dir=$HOME/bacula/working

If you want to install Bacula in an installation directory rather than run it out of the build directory
(as developers will do most of the time), you should also include the --sbindir and --sysconfdir options
with appropriate paths. Neither are necessary if you do not use ”make install” as is the case for most
development work. The install process will create the sbindir and sysconfdir if they do not exist, but it will
not automatically create the pid-dir, subsys-dir, or working-dir, so you must ensure that they exist before
running Bacula for the first time.

13.11 Red Hat

Using SQLite:

CFLAGS="-g -Wall" ./configure \

--sbindir=$HOME/bacula/bin \

--sysconfdir=$HOME/bacula/bin \

--enable-smartalloc \

Bacula Version 5.0.3 87

--with-sqlite=$HOME/bacula/depkgs/sqlite \

--with-working-dir=$HOME/bacula/working \

--with-pid-dir=$HOME/bacula/bin/working \

--with-subsys-dir=$HOME/bacula/bin/working \

--enable-bat \

--enable-conio

or

CFLAGS="-g -Wall" ./configure \

--sbindir=$HOME/bacula/bin \

--sysconfdir=$HOME/bacula/bin \

--enable-smartalloc \

--with-mysql=$HOME/mysql \

--with-working-dir=$HOME/bacula/working

--with-pid-dir=$HOME/bacula/bin/working \

--with-subsys-dir=$HOME/bacula/bin/working

--enable-conio

or finally, a completely traditional Red Hat Linux install:

CFLAGS="-g -Wall" ./configure \

--sbindir=/usr/sbin \

--sysconfdir=/etc/bacula \

--with-scriptdir=/etc/bacula \

--enable-smartalloc \

--enable-bat \

--with-mysql \

--with-working-dir=/var/bacula \

--with-pid-dir=/var/run \

--enable-conio

Note, Bacula assumes that /var/bacula, /var/run, and /var/lock/subsys exist so it will not automatically
create them during the install process.

13.12 Solaris

To build Bacula from source, you will need the following installed on your system (they are not by default):
libiconv, gcc 3.3.2, stdc++, libgcc (for stdc++ and gcc s libraries), make 3.8 or later.

You will probably also need to: Add /usr/local/bin to PATH and Add /usr/ccs/bin to PATH for ar.

It is possible to build Bacula on Solaris with the Solaris compiler, but we recommend using GNU C++ if
possible.

A typical configuration command might look like:

#!/bin/sh

CFLAGS="-g" ./configure \

--sbindir=$HOME/bacula/bin \

--sysconfdir=$HOME/bacula/bin \

--with-mysql=$HOME/mysql \

--enable-smartalloc \

--with-pid-dir=$HOME/bacula/bin/working \

--with-subsys-dir=$HOME/bacula/bin/working \

--with-working-dir=$HOME/bacula/working

As mentioned above, the install process will create the sbindir and sysconfdir if they do not exist, but it will
not automatically create the pid-dir, subsys-dir, or working-dir, so you must ensure that they exist before
running Bacula for the first time.

Note, you may need to install the following packages to build Bacula from source:

88 Bacula Version 5.0.3

SUNWbinutils,

SUNWarc,

SUNWhea,

SUNWGcc,

SUNWGnutls

SUNWGnutls-devel

SUNWGmake

SUNWgccruntime

SUNWlibgcrypt

SUNWzlib

SUNWzlibs

SUNWbinutilsS

SUNWGmakeS

SUNWlibm

export

PATH=/usr/bin::/usr/ccs/bin:/etc:/usr/openwin/bin:/usr/local/bin:/usr/sfw/bin:/opt/sfw/bin:/usr/ucb:/usr/sbin

If you have installed special software not normally in the Solaris libraries, such as OpenSSL, or the packages
shown above, then you may need to add /usr/sfw/lib to the library search path. Probably the simplest
way to do so is to run:

setenv LDFLAGS "-L/usr/sfw/lib -R/usr/sfw/lib"

Prior to running the ./configure command.

Alternatively, you can set the LD LIBARY PATH and/or the LD RUN PATH environment variables appro-
priately.

It is also possible to use the crle program to set the library search path. However, this should be used with
caution.

13.13 FreeBSD

Please see: The FreeBSD Diary for a detailed description on how to make Bacula work on your system. In
addition, users of FreeBSD prior to 4.9-STABLE dated Mon Dec 29 15:18:01 2003 UTC who plan to use tape
devices, please see the Tape Testing Chapter of this manual for important information on how to configure
your tape drive for compatibility with Bacula.

If you are using Bacula with MySQL, you should take care to compile MySQL with FreeBSD native threads
rather than LinuxThreads, since Bacula is normally built with FreeBSD native threads rather than Linux-
Treads. Mixing the two will probably not work.

13.14 Win32

To install the binary Win32 version of the File daemon please see the Win32 Installation Chapter in this
document.

13.15 One File Configure Script

The following script could be used if you want to put everything in a single file:

#!/bin/sh

CFLAGS="-g -Wall" \

./configure \

--sbindir=$HOME/bacula/bin \

http://www.freebsddiary.org/bacula.php

Bacula Version 5.0.3 89

--sysconfdir=$HOME/bacula/bin \

--mandir=$HOME/bacula/bin \

--enable-smartalloc \

--enable-bat \

--enable-bwx-console \

--enable-tray-monitor \

--with-pid-dir=$HOME/bacula/bin/working \

--with-subsys-dir=$HOME/bacula/bin/working \

--with-mysql \

--with-working-dir=$HOME/bacula/bin/working \

--with-dump-email=$USER@your-site.com \

--with-job-email=$USER@your-site.com \

--with-smtp-host=mail.your-site.com

exit 0

You may also want to put the following entries in your /etc/services file as it will make viewing the
connections made by Bacula easier to recognize (i.e. netstat -a):

bacula-dir 9101/tcp

bacula-fd 9102/tcp

bacula-sd 9103/tcp

13.16 Installing Bacula

Before setting up your configuration files, you will want to install Bacula in its final location. Simply enter:

make install

If you have previously installed Bacula, the old binaries will be overwritten, but the old configuration files
will remain unchanged, and the ”new” configuration files will be appended with a .new. Generally if you
have previously installed and run Bacula you will want to discard or ignore the configuration files with the
appended .new.

13.17 Building a File Daemon or Client

If you run the Director and the Storage daemon on one machine and you wish to back up another machine,
you must have a copy of the File daemon for that machine. If the machine and the Operating System are
identical, you can simply copy the Bacula File daemon binary file bacula-fd as well as its configuration
file bacula-fd.conf then modify the name and password in the conf file to be unique. Be sure to make
corresponding additions to the Director’s configuration file (bacula-dir.conf).

If the architecture or the OS level are different, you will need to build a File daemon on the Client machine.
To do so, you can use the same ./configure command as you did for your main program, starting either
from a fresh copy of the source tree, or using make distclean before the ./configure.

Since the File daemon does not access the Catalog database, you can remove the --with-mysql or --with-
sqlite options, then add --enable-client-only. This will compile only the necessary libraries and the client
programs and thus avoids the necessity of installing one or another of those database programs to build the
File daemon. With the above option, you simply enter make and just the client will be built.

13.18 Auto Starting the Daemons

If you wish the daemons to be automatically started and stopped when your system is booted (a good idea),
one more step is necessary. First, the ./configure process must recognize your system – that is it must be a
supported platform and not unknown, then you must install the platform dependent files by doing:

90 Bacula Version 5.0.3

(become root)

make install-autostart

Please note, that the auto-start feature is implemented only on systems that we officially support (currently,
FreeBSD, Red Hat/Fedora Linux, and Solaris), and has only been fully tested on Fedora Linux.

The make install-autostart will cause the appropriate startup scripts to be installed with the necessary
symbolic links. On Red Hat/Fedora Linux systems, these scripts reside in /etc/rc.d/init.d/bacula-dir
/etc/rc.d/init.d/bacula-fd, and /etc/rc.d/init.d/bacula-sd. However the exact location depends on
what operating system you are using.

If you only wish to install the File daemon, you may do so with:

make install-autostart-fd

13.19 Other Make Notes

To simply build a new executable in any directory, enter:

make

To clean out all the objects and binaries (including the files named 1, 2, or 3, which are development
temporary files), enter:

make clean

To really clean out everything for distribution, enter:

make distclean

note, this cleans out the Makefiles and is normally done from the top level directory to prepare for distribution
of the source. To recover from this state, you must redo the ./configure in the top level directory, since all
the Makefiles will be deleted.

To add a new file in a subdirectory, edit the Makefile.in in that directory, then simply do a make. In most
cases, the make will rebuild the Makefile from the new Makefile.in. In some case, you may need to issue the
make a second time. In extreme cases, cd to the top level directory and enter: make Makefiles.

To add dependencies:

make depend

The make depend appends the header file dependencies for each of the object files to Makefile and Make-
file.in. This command should be done in each directory where you change the dependencies. Normally, it
only needs to be run when you add or delete source or header files. make depend is normally automatically
invoked during the configuration process.

To install:

make install

This not normally done if you are developing Bacula, but is used if you are going to run it to backup your
system.

Bacula Version 5.0.3 91

After doing a make install the following files will be installed on your system (more or less). The exact files
and location (directory) for each file depends on your ./configure command (e.g. if you are using SQLite
instead of MySQL, some of the files will be different).

NOTE: it is quite probable that this list is out of date. But it is a starting point.

bacula

bacula-dir

bacula-dir.conf

bacula-fd

bacula-fd.conf

bacula-sd

bacula-sd.conf

bacula-tray-monitor

tray-monitor.conf

bextract

bls

bscan

btape

btraceback

btraceback.gdb

bconsole

bconsole.conf

create_mysql_database

dbcheck

delete_catalog_backup

drop_bacula_tables

drop_mysql_tables

make_bacula_tables

make_catalog_backup

make_mysql_tables

mtx-changer

query.sql

bsmtp

startmysql

stopmysql

bwx-console

bwx-console.conf

9 man pages

13.20 Installing Tray Monitor

The Tray Monitor is already installed if you used the --enable-tray-monitor configure option and ran
make install.

As you don’t run your graphical environment as root (if you do, you should change that bad habit), don’t
forget to allow your user to read tray-monitor.conf, and to execute bacula-tray-monitor (this is not a
security issue).

Then log into your graphical environment (KDE, GNOME or something else), run bacula-tray-monitor as
your user, and see if a cassette icon appears somewhere on the screen, usually on the task bar. If it doesn’t,
follow the instructions below related to your environment or window manager.

13.20.1 GNOME

System tray, or notification area if you use the GNOME terminology, has been supported in GNOME since
version 2.2. To activate it, right-click on one of your panels, open the menu Add to this Panel, then
Utility and finally click on Notification Area.

92 Bacula Version 5.0.3

13.20.2 KDE

System tray has been supported in KDE since version 3.1. To activate it, right-click on one of your panels,
open the menu Add, then Applet and finally click on System Tray.

13.20.3 Other window managers

Read the documentation to know if the Freedesktop system tray standard is supported by your window
manager, and if applicable, how to activate it.

13.21 Modifying the Bacula Configuration Files

See the chapter Configuring Bacula in this manual for instructions on how to set Bacula configuration files.

Chapter 14

Critical Items to Implement Before
Production

We recommend you take your time before implementing a production a Bacula backup system since Bacula
is a rather complex program, and if you make a mistake, you may suddenly find that you cannot restore your
files in case of a disaster. This is especially true if you have not previously used a major backup product.

If you follow the instructions in this chapter, you will have covered most of the major problems that can
occur. It goes without saying that if you ever find that we have left out an important point, please inform
us, so that we can document it to the benefit of everyone.

14.1 Critical Items

The following assumes that you have installed Bacula, you more or less understand it, you have at least
worked through the tutorial or have equivalent experience, and that you have set up a basic production
configuration. If you haven’t done the above, please do so and then come back here. The following is a sort
of checklist that points with perhaps a brief explanation of why you should do it. In most cases, you will
find the details elsewhere in the manual. The order is more or less the order you would use in setting up a
production system (if you already are in production, use the checklist anyway).

• Test your tape drive for compatibility with Bacula by using the test command in the btape program.

• Better than doing the above is to walk through the nine steps in the Tape Testing chapter of the
manual. It may take you a bit of time, but it will eliminate surprises.

• Test the end of tape handling of your tape drive by using the fill command in the btape program.

• If you are using a Linux 2.4 kernel, make sure that /lib/tls is disabled. Bacula does not work with this
library. See the second point under Supported Operating Systems.

• Do at least one restore of files. If you backup multiple OS types (Linux, Solaris, HP, MacOS, FreeBSD,
Win32, ...), restore files from each system type. The Restoring Files chapter shows you how.

• Write a bootstrap file to a separate system for each backup job. The Write Bootstrap directive is
described in the Director Configuration chapter of the manual, and more details are available in the
Bootstrap File chapter. Also, the default bacula-dir.conf comes with a Write Bootstrap directive
defined. This allows you to recover the state of your system as of the last backup.

• Backup your catalog. An example of this is found in the default bacula-dir.conf file. The backup
script is installed by default and should handle any database, though you may want to make your own
local modifications. See also Backing Up Your Bacula Database - Security Considerations for more
information.

93

94 Bacula Version 5.0.3

• Write a bootstrap file for the catalog. An example of this is found in the default bacula-dir.conf file.
This will allow you to quickly restore your catalog in the event it is wiped out – otherwise it is many
excruciating hours of work.

• Make a copy of the bacula-dir.conf, bacula-sd.conf, and bacula-fd.conf files that you are using on your
server. Put it in a safe place (on another machine) as these files can be difficult to reconstruct if your
server dies.

• Make a Bacula Rescue CDROM! See the Disaster Recovery Using a Bacula Rescue CDROM chapter.
It is trivial to make such a CDROM, and it can make system recovery in the event of a lost hard disk
infinitely easier.

• Bacula assumes all filenames are in UTF-8 format. This is important when saving the filenames to the
catalog. For Win32 machine, Bacula will automatically convert from Unicode to UTF-8, but on Unix,
Linux, *BSD, and MacOS X machines, you must explicitly ensure that your locale is set properly.
Typically this means that the bf LANG environment variable must end in .UTF-8. An full example
is en US.UTF-8. The exact syntax may vary a bit from OS to OS, and exactly how you define it will
also vary.

On most modern Win32 machines, you can edit the conf files with notepad and choose output encoding
UTF-8.

14.2 Recommended Items

Although these items may not be critical, they are recommended and will help you avoid problems.

• Read the Quick Start Guide to Bacula

• After installing and experimenting with Bacula, read and work carefully through the examples in the
Tutorial chapter of this manual.

• Learn what each of the Bacula Utility Programs does.

• Set up reasonable retention periods so that your catalog does not grow to be too big. See the following
three chapters:
Recycling your Volumes,
Basic Volume Management,
Using Pools to Manage Volumes.

• Perform a bare metal recovery using the Bacula Rescue CDROM. See the
Disaster Recovery Using a Bacula Rescue CDROM chapter.

If you absolutely must implement a system where you write a different tape each night and take it offsite in
the morning. We recommend that you do several things:

• Write a bootstrap file of your backed up data and a bootstrap file of your catalog backup to a floppy
disk or a CDROM, and take that with the tape. If this is not possible, try to write those files to
another computer or offsite computer, or send them as email to a friend. If none of that is possible, at
least print the bootstrap files and take that offsite with the tape. Having the bootstrap files will make
recovery much easier.

• It is better not to force Bacula to load a particular tape each day. Instead, let Bacula choose the tape.
If you need to know what tape to mount, you can print a list of recycled and appendable tapes daily,
and select any tape from that list. Bacula may propose a particular tape for use that it considers
optimal, but it will accept any valid tape from the correct pool.

Chapter 15

A Brief Tutorial

This chapter will guide you through running Bacula. To do so, we assume you have installed Bacula, possibly
in a single file as shown in the previous chapter, in which case, you can run Bacula as non-root for these
tests. However, we assume that you have not changed the .conf files. If you have modified the .conf files,
please go back and uninstall Bacula, then reinstall it, but do not make any changes. The examples in this
chapter use the default configuration files, and will write the volumes to disk in your /tmp directory, in
addition, the data backed up will be the source directory where you built Bacula. As a consequence, you
can run all the Bacula daemons for these tests as non-root. Please note, in production, your File daemon(s)
must run as root. See the Security chapter for more information on this subject.

The general flow of running Bacula is:

1. cd <install-directory>

2. Start the Database (if using MySQL or PostgreSQL)

3. Start the Daemons with ./bacula start

4. Start the Console program to interact with the Director

5. Run a job

6. When the Volume fills, unmount the Volume, if it is a tape, label a new one, and continue running. In
this chapter, we will write only to disk files so you won’t need to worry about tapes for the moment.

7. Test recovering some files from the Volume just written to ensure the backup is good and that you
know how to recover. Better test before disaster strikes

8. Add a second client.

Each of these steps is described in more detail below.

15.1 Before Running Bacula

Before running Bacula for the first time in production, we recommend that you run the test command in
the btape program as described in the Utility Program Chapter of this manual. This will help ensure that
Bacula functions correctly with your tape drive. If you have a modern HP, Sony, or Quantum DDS or DLT
tape drive running on Linux or Solaris, you can probably skip this test as Bacula is well tested with these
drives and systems. For all other cases, you are strongly encouraged to run the test before continuing.
btape also has a fill command that attempts to duplicate what Bacula does when filling a tape and writing
on the next tape. You should consider trying this command as well, but be forewarned, it can take hours
(about four hours on my drive) to fill a large capacity tape.

95

96 Bacula Version 5.0.3

15.2 Starting the Database

If you are using MySQL or PostgreSQL as the Bacula database, you should start it before you attempt to run
a job to avoid getting error messages from Bacula when it starts. The scripts startmysql and stopmysql
are what I (Kern) use to start and stop my local MySQL. Note, if you are using SQLite, you will not want
to use startmysql or stopmysql. If you are running this in production, you will probably want to find
some way to automatically start MySQL or PostgreSQL after each system reboot.

If you are using SQLite (i.e. you specified the --with-sqlite=xxx option on the ./configure command,
you need do nothing. SQLite is automatically started by Bacula.

15.3 Starting the Daemons

Assuming you have built from source or have installed the rpms, to start the three daemons, from your
installation directory, simply enter:

./bacula start

The bacula script starts the Storage daemon, the File daemon, and the Director daemon, which all normally
run as daemons in the background. If you are using the autostart feature of Bacula, your daemons will either
be automatically started on reboot, or you can control them individually with the files bacula-dir, bacula-
fd, and bacula-sd, which are usually located in /etc/init.d, though the actual location is system dependent.
Some distributions may do this differently.

Note, on Windows, currently only the File daemon is ported, and it must be started differently. Please see
the Windows Version of Bacula Chapter of this manual.

The rpm packages configure the daemons to run as user=root and group=bacula. The rpm installation also
creates the group bacula if it does not exist on the system. Any users that you add to the group bacula
will have access to files created by the daemons. To disable or alter this behavior edit the daemon startup
scripts:

• /etc/bacula/bacula

• /etc/init.d/bacula-dir

• /etc/init.d/bacula-sd

• /etc/init.d/bacula-fd

and then restart as noted above.

The installation chapter of this manual explains how you can install scripts that will automatically restart
the daemons when the system starts.

15.4 Using the Director to Query and Start Jobs

To communicate with the director and to query the state of Bacula or run jobs, from the top level directory,
simply enter:

./bconsole

Alternatively to running the command line console, if you have Qt4 installed and used the --enable-bat
on the configure command, you may use the Bacula Administration Tool (bat):

./bat

Bacula Version 5.0.3 97

Which has a graphical interface, and many more features than bconsole.

Two other possibilities are to run the GNOME console bgnome-console or the wxWidgets program bwx-
console.

For simplicity, here we will describe only the ./bconsole program. Most of what is described here applies
equally well to ./bat, ./bgnome-console, and to bwx-console.

The ./bconsole runs the Bacula Console program, which connects to the Director daemon. Since Bacula is
a network program, you can run the Console program anywhere on your network. Most frequently, however,
one runs it on the same machine as the Director. Normally, the Console program will print something similar
to the following:

[kern@polymatou bin]$./bconsole

Connecting to Director lpmatou:9101

1000 OK: HeadMan Version: 2.1.8 (14 May 2007)

*

the asterisk is the console command prompt.

Type help to see a list of available commands:

*help

Command Description

======= ===========

add add media to a pool

autodisplay autodisplay [on|off] -- console messages

automount automount [on|off] -- after label

cancel cancel [<jobid=nnn> | <job=name>] -- cancel a job

create create DB Pool from resource

delete delete [pool=<pool-name> | media volume=<volume-name>]

disable disable <job=name> -- disable a job

enable enable <job=name> -- enable a job

estimate performs FileSet estimate, listing gives full listing

exit exit = quit

gui gui [on|off] -- non-interactive gui mode

help print this command

list list [pools | jobs | jobtotals | media <pool=pool-name> |

files <jobid=nn>]; from catalog

label label a tape

llist full or long list like list command

memory print current memory usage

messages messages

mount mount <storage-name>

prune prune expired records from catalog

purge purge records from catalog

python python control commands

quit quit

query query catalog

restore restore files

relabel relabel a tape

release release <storage-name>

reload reload conf file

run run <job-name>

status status [[slots] storage | dir | client]=<name>

setdebug sets debug level

setip sets new client address -- if authorized

show show (resource records) [jobs | pools | ... | all]

sqlquery use SQL to query catalog

time print current time

trace turn on/off trace to file

unmount unmount <storage-name>

umount umount <storage-name> for old-time Unix guys

update update Volume, Pool or slots

use use catalog xxx

var does variable expansion

version print Director version

wait wait until no jobs are running [<jobname=name> | <jobid=nnn> | <ujobid=complete_name>]

*

98 Bacula Version 5.0.3

Details of the console program’s commands are explained in the Console Chapter of this manual.

15.5 Running a Job

At this point, we assume you have done the following:

• Configured Bacula with ./configure --your-options

• Built Bacula using make

• Installed Bacula using make install

• Have created your database with, for example, ./create sqlite database

• Have created the Bacula database tables with, ./make bacula tables

• Have possibly edited your bacula-dir.conf file to personalize it a bit. BE CAREFUL! if you change
the Director’s name or password, you will need to make similar modifications in the other .conf files.
For the moment it is probably better to make no changes.

• You have started Bacula with ./bacula start

• You have invoked the Console program with ./bconsole

Furthermore, we assume for the moment you are using the default configuration files.

At this point, enter the following command:

show filesets

and you should get something similar to:

FileSet: name=Full Set

O M

N

I /home/kern/bacula/regress/build

N

E /proc

E /tmp

E /.journal

E /.fsck

N

FileSet: name=Catalog

O M

N

I /home/kern/bacula/regress/working/bacula.sql

N

This is a pre-defined FileSet that will backup the Bacula source directory. The actual directory names
printed should correspond to your system configuration. For testing purposes, we have chosen a directory
of moderate size (about 40 Megabytes) and complexity without being too big. The FileSet Catalog is used
for backing up Bacula’s catalog and is not of interest to us for the moment. The I entries are the files or
directories that will be included in the backup and the E are those that will be excluded, and the O entries
are the options specified for the FileSet. You can change what is backed up by editing bacula-dir.conf and
changing the File = line in the FileSet resource.

Now is the time to run your first backup job. We are going to backup your Bacula source directory to a File
Volume in your /tmp directory just to show you how easy it is. Now enter:

status dir

Bacula Version 5.0.3 99

and you should get the following output:

rufus-dir Version: 1.30 (28 April 2003)

Daemon started 28-Apr-2003 14:03, 0 Jobs run.

Console connected at 28-Apr-2003 14:03

No jobs are running.

Level Type Scheduled Name

===

Incremental Backup 29-Apr-2003 01:05 Client1

Full Backup 29-Apr-2003 01:10 BackupCatalog

====

where the times and the Director’s name will be different according to your setup. This shows that an
Incremental job is scheduled to run for the Job Client1 at 1:05am and that at 1:10, a BackupCatalog is
scheduled to run. Note, you should probably change the name Client1 to be the name of your machine, if
not, when you add additional clients, it will be very confusing. For my real machine, I use Rufus rather
than Client1 as in this example.

Now enter:

status client

and you should get something like:

The defined Client resources are:

1: rufus-fd

Item 1 selected automatically.

Connecting to Client rufus-fd at rufus:8102

rufus-fd Version: 1.30 (28 April 2003)

Daemon started 28-Apr-2003 14:03, 0 Jobs run.

Director connected at: 28-Apr-2003 14:14

No jobs running.

====

In this case, the client is named rufus-fd your name will be different, but the line beginning with rufus-fd
Version ... is printed by your File daemon, so we are now sure it is up and running.

Finally do the same for your Storage daemon with:

status storage

and you should get:

The defined Storage resources are:

1: File

Item 1 selected automatically.

Connecting to Storage daemon File at rufus:8103

rufus-sd Version: 1.30 (28 April 2003)

Daemon started 28-Apr-2003 14:03, 0 Jobs run.

Device /tmp is not open.

No jobs running.

====

You will notice that the default Storage daemon device is named File and that it will use device /tmp,
which is not currently open.

Now, let’s actually run a job with:

run

100 Bacula Version 5.0.3

you should get the following output:

Using default Catalog name=MyCatalog DB=bacula

A job name must be specified.

The defined Job resources are:

1: Client1

2: BackupCatalog

3: RestoreFiles

Select Job resource (1-3):

Here, Bacula has listed the three different Jobs that you can run, and you should choose number 1 and type
enter, at which point you will get:

Run Backup job

JobName: Client1

FileSet: Full Set

Level: Incremental

Client: rufus-fd

Storage: File

Pool: Default

When: 2003-04-28 14:18:57

OK to run? (yes/mod/no):

At this point, take some time to look carefully at what is printed and understand it. It is asking you if it
is OK to run a job named Client1 with FileSet Full Set (we listed above) as an Incremental job on your
Client (your client name will be different), and to use Storage File and Pool Default, and finally, it wants
to run it now (the current time should be displayed by your console).

Here we have the choice to run (yes), to modify one or more of the above parameters (mod), or to not
run the job (no). Please enter yes, at which point you should immediately get the command prompt (an
asterisk). If you wait a few seconds, then enter the command messages you will get back something like:

28-Apr-2003 14:22 rufus-dir: Last FULL backup time not found. Doing

FULL backup.

28-Apr-2003 14:22 rufus-dir: Start Backup JobId 1,

Job=Client1.2003-04-28_14.22.33

28-Apr-2003 14:22 rufus-sd: Job Client1.2003-04-28_14.22.33 waiting.

Cannot find any appendable volumes.

Please use the "label" command to create a new Volume for:

Storage: FileStorage

Media type: File

Pool: Default

The first message, indicates that no previous Full backup was done, so Bacula is upgrading our Incremental
job to a Full backup (this is normal). The second message indicates that the job started with JobId 1., and
the third message tells us that Bacula cannot find any Volumes in the Pool for writing the output. This is
normal because we have not yet created (labeled) any Volumes. Bacula indicates to you all the details of
the volume it needs.

At this point, the job is BLOCKED waiting for a Volume. You can check this if you want by doing a status
dir. In order to continue, we must create a Volume that Bacula can write on. We do so with:

label

and Bacula will print:

The defined Storage resources are:

1: File

Item 1 selected automatically.

Enter new Volume name:

Bacula Version 5.0.3 101

at which point, you should enter some name beginning with a letter and containing only letters and numbers
(period, hyphen, and underscore) are also permitted. For example, enter TestVolume001, and you should
get back:

Defined Pools:

1: Default

Item 1 selected automatically.

Connecting to Storage daemon File at rufus:8103 ...

Sending label command for Volume "TestVolume001" Slot 0 ...

3000 OK label. Volume=TestVolume001 Device=/tmp

Catalog record for Volume "TestVolume002", Slot 0 successfully created.

Requesting mount FileStorage ...

3001 OK mount. Device=/tmp

Finally, enter messages and you should get something like:

28-Apr-2003 14:30 rufus-sd: Wrote label to prelabeled Volume

"TestVolume001" on device /tmp

28-Apr-2003 14:30 rufus-dir: Bacula 1.30 (28Apr03): 28-Apr-2003 14:30

JobId: 1

Job: Client1.2003-04-28_14.22.33

FileSet: Full Set

Backup Level: Full

Client: rufus-fd

Start time: 28-Apr-2003 14:22

End time: 28-Apr-2003 14:30

Files Written: 1,444

Bytes Written: 38,988,877

Rate: 81.2 KB/s

Software Compression: None

Volume names(s): TestVolume001

Volume Session Id: 1

Volume Session Time: 1051531381

Last Volume Bytes: 39,072,359

FD termination status: OK

SD termination status: OK

Termination: Backup OK

28-Apr-2003 14:30 rufus-dir: Begin pruning Jobs.

28-Apr-2003 14:30 rufus-dir: No Jobs found to prune.

28-Apr-2003 14:30 rufus-dir: Begin pruning Files.

28-Apr-2003 14:30 rufus-dir: No Files found to prune.

28-Apr-2003 14:30 rufus-dir: End auto prune.

If you don’t see the output immediately, you can keep entering messages until the job terminates, or you
can enter, autodisplay on and your messages will automatically be displayed as soon as they are ready.

If you do an ls -l of your /tmp directory, you will see that you have the following item:

-rw-r----- 1 kern kern 39072153 Apr 28 14:30 TestVolume001

This is the file Volume that you just wrote and it contains all the data of the job just run. If you run
additional jobs, they will be appended to this Volume unless you specify otherwise.

You might ask yourself if you have to label all the Volumes that Bacula is going to use. The answer for disk
Volumes, like the one we used, is no. It is possible to have Bacula automatically label volumes. For tape
Volumes, you will most likely have to label each of the Volumes you want to use.

If you would like to stop here, you can simply enter quit in the Console program, and you can stop Bacula
with ./bacula stop. To clean up, simply delete the file /tmp/TestVolume001, and you should also
re-initialize your database using:

./drop_bacula_tables

./make_bacula_tables

102 Bacula Version 5.0.3

Please note that this will erase all information about the previous jobs that have run, and that you might
want to do it now while testing but that normally you will not want to re-initialize your database.

If you would like to try restoring the files that you just backed up, read the following section.

15.6 Restoring Your Files

If you have run the default configuration and the save of the Bacula source code as demonstrated above, you
can restore the backed up files in the Console program by entering:

restore all

where you will get:

First you select one or more JobIds that contain files

to be restored. You will be presented several methods

of specifying the JobIds. Then you will be allowed to

select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:

1: List last 20 Jobs run

2: List Jobs where a given File is saved

3: Enter list of comma separated JobIds to select

4: Enter SQL list command

5: Select the most recent backup for a client

6: Select backup for a client before a specified time

7: Enter a list of files to restore

8: Enter a list of files to restore before a specified time

9: Find the JobIds of the most recent backup for a client

10: Find the JobIds for a backup for a client before a specified time

11: Enter a list of directories to restore for found JobIds

12: Cancel

Select item: (1-12):

As you can see, there are a number of options, but for the current demonstration, please enter 5 to do a
restore of the last backup you did, and you will get the following output:

Defined Clients:

1: rufus-fd

Item 1 selected automatically.

The defined FileSet resources are:

1: 1 Full Set 2003-04-28 14:22:33

Item 1 selected automatically.

+-------+-------+----------+---------------------+---------------+

| JobId | Level | JobFiles | StartTime | VolumeName |

+-------+-------+----------+---------------------+---------------+

| 1 | F | 1444 | 2003-04-28 14:22:33 | TestVolume002 |

+-------+-------+----------+---------------------+---------------+

You have selected the following JobId: 1

Building directory tree for JobId 1 ...

1 Job inserted into the tree and marked for extraction.

The defined Storage resources are:

1: File

Item 1 selected automatically.

You are now entering file selection mode where you add and

remove files to be restored. All files are initially added.

Enter "done" to leave this mode.

cwd is: /

$

where I have truncated the listing on the right side to make it more readable. As you can see by starting
at the top of the listing, Bacula knows what client you have, and since there was only one, it selected it
automatically, likewise for the FileSet. Then Bacula produced a listing containing all the jobs that form

Bacula Version 5.0.3 103

the current backup, in this case, there is only one, and the Storage daemon was also automatically chosen.
Bacula then took all the files that were in Job number 1 and entered them into a directory tree (a sort
of in memory representation of your filesystem). At this point, you can use the cd and ls ro dir commands
to walk up and down the directory tree and view what files will be restored. For example, if I enter cd
/home/kern/bacula/bacula-1.30 and then enter dir I will get a listing of all the files in the Bacula
source directory. On your system, the path will be somewhat different. For more information on this, please
refer to the Restore Command Chapter of this manual for more details.

To exit this mode, simply enter:

done

and you will get the following output:

Bootstrap records written to

/home/kern/bacula/testbin/working/restore.bsr

The restore job will require the following Volumes:

TestVolume001

1444 files selected to restore.

Run Restore job

JobName: RestoreFiles

Bootstrap: /home/kern/bacula/testbin/working/restore.bsr

Where: /tmp/bacula-restores

Replace: always

FileSet: Full Set

Backup Client: rufus-fd

Restore Client: rufus-fd

Storage: File

JobId: *None*

When: 2005-04-28 14:53:54

OK to run? (yes/mod/no):

If you answer yes your files will be restored to /tmp/bacula-restores. If you want to restore the files to
their original locations, you must use the mod option and explicitly set Where: to nothing (or to /). We
recommend you go ahead and answer yes and after a brief moment, enter messages, at which point you
should get a listing of all the files that were restored as well as a summary of the job that looks similar to
this:

28-Apr-2005 14:56 rufus-dir: Bacula 2.1.8 (08May07): 08-May-2007 14:56:06

Build OS: i686-pc-linux-gnu suse 10.2

JobId: 2

Job: RestoreFiles.2007-05-08_14.56.06

Restore Client: rufus-fd

Start time: 08-May-2007 14:56

End time: 08-May-2007 14:56

Files Restored: 1,444

Bytes Restored: 38,816,381

Rate: 9704.1 KB/s

FD Errors: 0

FD termination status: OK

SD termination status: OK

Termination: Restore OK

08-May-2007 14:56 rufus-dir: Begin pruning Jobs.

08-May-2007 14:56 rufus-dir: No Jobs found to prune.

08-May-2007 14:56 rufus-dir: Begin pruning Files.

08-May-2007 14:56 rufus-dir: No Files found to prune.

08-May-2007 14:56 rufus-dir: End auto prune.

After exiting the Console program, you can examine the files in /tmp/bacula-restores, which will contain
a small directory tree with all the files. Be sure to clean up at the end with:

rm -rf /tmp/bacula-restore

104 Bacula Version 5.0.3

15.7 Quitting the Console Program

Simply enter the command quit.

15.8 Adding a Second Client

If you have gotten the example shown above to work on your system, you may be ready to add a second
Client (File daemon). That is you have a second machine that you would like backed up. The only part
you need installed on the other machine is the binary bacula-fd (or bacula-fd.exe for Windows) and its
configuration file bacula-fd.conf. You can start with the same bacula-fd.conf file that you are currently
using and make one minor modification to it to create the conf file for your second client. Change the File
daemon name from whatever was configured, rufus-fd in the example above, but your system will have a
different name. The best is to change it to the name of your second machine. For example:

...

#

"Global" File daemon configuration specifications

#

FileDaemon { # this is me

Name = rufus-fd

FDport = 9102 # where we listen for the director

WorkingDirectory = /home/kern/bacula/working

Pid Directory = /var/run

}

...

would become:

...

#

"Global" File daemon configuration specifications

#

FileDaemon { # this is me

Name = matou-fd

FDport = 9102 # where we listen for the director

WorkingDirectory = /home/kern/bacula/working

Pid Directory = /var/run

}

...

where I show just a portion of the file and have changed rufus-fd to matou-fd. The names you use are
your choice. For the moment, I recommend you change nothing else. Later, you will want to change the
password.

Now you should install that change on your second machine. Then you need to make some additions to your
Director’s configuration file to define the new File daemon or Client. Starting from our original example
which should be installed on your system, you should add the following lines (essentially copies of the existing
data but with the names changed) to your Director’s configuration file bacula-dir.conf.

#

Define the main nightly save backup job

By default, this job will back up to disk in /tmp

Job {

Name = "Matou"

Type = Backup

Client = matou-fd

FileSet = "Full Set"

Schedule = "WeeklyCycle"

Storage = File

Messages = Standard

Pool = Default

Write Bootstrap = "/home/kern/bacula/working/matou.bsr"

Bacula Version 5.0.3 105

}

Client (File Services) to backup

Client {

Name = matou-fd

Address = matou

FDPort = 9102

Catalog = MyCatalog

Password = "xxxxx" # password for

File Retention = 30d # 30 days

Job Retention = 180d # six months

AutoPrune = yes # Prune expired Jobs/Files

}

Then make sure that the Address parameter in the Storage resource is set to the fully qualified domain name
and not to something like ”localhost”. The address specified is sent to the File daemon (client) and it must
be a fully qualified domain name. If you pass something like ”localhost” it will not resolve correctly and will
result in a time out when the File daemon fails to connect to the Storage daemon.

That is all that is necessary. I copied the existing resource to create a second Job (Matou) to backup the
second client (matou-fd). It has the name Matou, the Client is named matou-fd, and the bootstrap file
name is changed, but everything else is the same. This means that Matou will be backed up on the same
schedule using the same set of tapes. You may want to change that later, but for now, let’s keep it simple.

The second change was to add a new Client resource that defines matou-fd and has the correct address
matou, but in real life, you may need a fully qualified domain name or an IP address. I also kept the
password the same (shown as xxxxx for the example).

At this point, if you stop Bacula and restart it, and start the Client on the other machine, everything will
be ready, and the prompts that you saw above will now include the second machine.

To make this a real production installation, you will possibly want to use different Pool, or a different
schedule. It is up to you to customize. In any case, you should change the password in both the Director’s
file and the Client’s file for additional security.

For some important tips on changing names and passwords, and a diagram of what names and passwords
must match, please see Authorization Errors in the FAQ chapter of this manual.

15.9 When The Tape Fills

If you have scheduled your job, typically nightly, there will come a time when the tape fills up and Bacula
cannot continue. In this case, Bacula will send you a message similar to the following:

rufus-sd: block.c:337 === Write error errno=28: ERR=No space left

on device

This indicates that Bacula got a write error because the tape is full. Bacula will then search the Pool specified
for your Job looking for an appendable volume. In the best of all cases, you will have properly set your
Retention Periods and you will have all your tapes marked to be Recycled, and Bacula will automatically
recycle the tapes in your pool requesting and overwriting old Volumes. For more information on recycling,
please see the Recycling chapter of this manual. If you find that your Volumes were not properly recycled
(usually because of a configuration error), please see the Manually Recycling Volumes section of the Recycling
chapter.

If like me, you have a very large set of Volumes and you label them with the date the Volume was first
writing, or you have not set up your Retention periods, Bacula will not find a tape in the pool, and it will
send you a message similar to the following:

rufus-sd: Job kernsave.2002-09-19.10:50:48 waiting. Cannot find any

appendable volumes.

Please use the "label" command to create a new Volume for:

106 Bacula Version 5.0.3

Storage: SDT-10000

Media type: DDS-4

Pool: Default

Until you create a new Volume, this message will be repeated an hour later, then two hours later, and so on
doubling the interval each time up to a maximum interval of one day.

The obvious question at this point is: What do I do now?

The answer is simple: first, using the Console program, close the tape drive using the unmount command.
If you only have a single drive, it will be automatically selected, otherwise, make sure you release the one
specified on the message (in this case STD-10000).

Next, you remove the tape from the drive and insert a new blank tape. Note, on some older tape drives, you
may need to write an end of file mark (mt -f /dev/nst0 weof) to prevent the drive from running away
when Bacula attempts to read the label.

Finally, you use the label command in the Console to write a label to the new Volume. The label command
will contact the Storage daemon to write the software label, if it is successful, it will add the new Volume
to the Pool, then issue a mount command to the Storage daemon. See the previous sections of this chapter
for more details on labeling tapes.

The result is that Bacula will continue the previous Job writing the backup to the new Volume.

If you have a Pool of volumes and Bacula is cycling through them, instead of the above message ”Cannot
find any appendable volumes.”, Bacula may ask you to mount a specific volume. In that case, you should
attempt to do just that. If you do not have the volume any more (for any of a number of reasons), you can
simply mount another volume from the same Pool, providing it is appendable, and Bacula will use it. You
can use the list volumes command in the console program to determine which volumes are appendable and
which are not.

If like me, you have your Volume retention periods set correctly, but you have no more free Volumes, you
can relabel and reuse a Volume as follows:

• Do a list volumes in the Console and select the oldest Volume for relabeling.

• If you have setup your Retention periods correctly, the Volume should have VolStatus Purged.

• If the VolStatus is not set to Purged, you will need to purge the database of Jobs that are written on
that Volume. Do so by using the command purge jobs volume in the Console. If you have multiple
Pools, you will be prompted for the Pool then enter the VolumeName (or MediaId) when requested.

• Then simply use the relabel command to relabel the Volume.

To manually relabel the Volume use the following additional steps:

• To delete the Volume from the catalog use the delete volume command in the Console and select
the VolumeName (or MediaId) to be deleted.

• Use the unmount command in the Console to unmount the old tape.

• Physically relabel the old Volume that you deleted so that it can be reused.

• Insert the old Volume in the tape drive.

• From a command line do: mt -f /dev/st0 rewind and mt -f /dev/st0 weof, where you need
to use the proper tape drive name for your system in place of /dev/st0.

• Use the label command in the Console to write a new Bacula label on your tape.

• Use the mount command in the Console if it is not automatically done, so that Bacula starts using
your newly labeled tape.

Bacula Version 5.0.3 107

15.10 Other Useful Console Commands

status dir Print a status of all running jobs and jobs scheduled in the next 24 hours.

status The console program will prompt you to select a daemon type, then will request the daemon’s status.

status jobid=nn Print a status of JobId nn if it is running. The Storage daemon is contacted and requested
to print a current status of the job as well.

list pools List the pools defined in the Catalog (normally only Default is used).

list media Lists all the media defined in the Catalog.

list jobs Lists all jobs in the Catalog that have run.

list jobid=nn Lists JobId nn from the Catalog.

list jobtotals Lists totals for all jobs in the Catalog.

list files jobid=nn List the files that were saved for JobId nn.

list jobmedia List the media information for each Job run.

messages Prints any messages that have been directed to the console.

unmount storage=storage-name Unmounts the drive associated with the storage device with the name
storage-name if the drive is not currently being used. This command is used if you wish Bacula to
free the drive so that you can use it to label a tape.

mount storage=storage-name Causes the drive associated with the storage device to be mounted again.
When Bacula reaches the end of a volume and requests you to mount a new volume, you must issue
this command after you have placed the new volume in the drive. In effect, it is the signal needed by
Bacula to know to start reading or writing the new volume.

quit Exit or quit the console program.

Most of the commands given above, with the exception of list, will prompt you for the necessary arguments
if you simply enter the command name.

15.11 Debug Daemon Output

If you want debug output from the daemons as they are running, start the daemons from the install directory
as follows:

./bacula start -d100

This can be particularly helpful if your daemons do not start correctly, because direct daemon output to the
console is normally directed to the NULL device, but with the debug level greater than zero, the output will
be sent to the starting terminal.

To stop the three daemons, enter the following from the install directory:

./bacula stop

The execution of bacula stop may complain about pids not found. This is OK, especially if one of the
daemons has died, which is very rare.

To do a full system save, each File daemon must be running as root so that it will have permission to access
all the files. None of the other daemons require root privileges. However, the Storage daemon must be able
to open the tape drives. On many systems, only root can access the tape drives. Either run the Storage
daemon as root, or change the permissions on the tape devices to permit non-root access. MySQL and
PostgreSQL can be installed and run with any userid; root privilege is not necessary.

108 Bacula Version 5.0.3

15.12 Patience When Starting Daemons or Mounting Blank Tapes

When you start the Bacula daemons, the Storage daemon attempts to open all defined storage devices and
verify the currently mounted Volume (if configured). Until all the storage devices are verified, the Storage
daemon will not accept connections from the Console program. If a tape was previously used, it will be
rewound, and on some devices this can take several minutes. As a consequence, you may need to have a bit
of patience when first contacting the Storage daemon after starting the daemons. If you can see your tape
drive, once the lights stop flashing, the drive will be ready to be used.

The same considerations apply if you have just mounted a blank tape in a drive such as an HP DLT. It can
take a minute or two before the drive properly recognizes that the tape is blank. If you attempt to mount
the tape with the Console program during this recognition period, it is quite possible that you will hang
your SCSI driver (at least on my Red Hat Linux system). As a consequence, you are again urged to have
patience when inserting blank tapes. Let the device settle down before attempting to access it.

15.13 Difficulties Connecting from the FD to the SD

If you are having difficulties getting one or more of your File daemons to connect to the Storage daemon,
it is most likely because you have not used a fully qualified domain name on the Address directive in the
Director’s Storage resource. That is the resolver on the File daemon’s machine (not on the Director’s) must
be able to resolve the name you supply into an IP address. An example of an address that is guaranteed
not to work: localhost. An example that may work: megalon. An example that is more likely to work:
magalon.mydomain.com. OnWin32 if you don’t have a good resolver (often true on older Win98 systems),
you might try using an IP address in place of a name.

If your address is correct, then make sure that no other program is using the port 9103 on the Storage
daemon’s machine. The Bacula port numbers are authorized by IANA, and should not be used by other
programs, but apparently some HP printers do use these port numbers. A netstat -a on the Storage
daemon’s machine can determine who is using the 9103 port (used for FD to SD communications in Bacula).

15.14 Daemon Command Line Options

Each of the three daemons (Director, File, Storage) accepts a small set of options on the command line. In
general, each of the daemons as well as the Console program accepts the following options:

-c <file> Define the file to use as a configuration file. The default is the daemon name followed by .conf
i.e. bacula-dir.conf for the Director, bacula-fd.conf for the File daemon, and bacula-sd for the
Storage daemon.

-d nn Set the debug level to nn. Higher levels of debug cause more information to be displayed on STDOUT
concerning what the daemon is doing.

-f Run the daemon in the foreground. This option is needed to run the daemon under the debugger.

-g ¡group¿ Run the daemon under this group. This must be a group name, not a GID.

-s Do not trap signals. This option is needed to run the daemon under the debugger.

-t Read the configuration file and print any error messages, then immediately exit. Useful for syntax testing
of new configuration files.

-u ¡user¿ Run the daemon as this user. This must be a user name, not a UID.

-v Be more verbose or more complete in printing error and informational messages. Recommended.

-? Print the version and list of options.

Bacula Version 5.0.3 109

15.15 Creating a Pool

Creating the Pool is automatically done when Bacula starts, so if you understand Pools, you can skip to
the next section.

When you run a job, one of the things that Bacula must know is what Volumes to use to backup the FileSet.
Instead of specifying a Volume (tape) directly, you specify which Pool of Volumes you want Bacula to consult
when it wants a tape for writing backups. Bacula will select the first available Volume from the Pool that
is appropriate for the Storage device you have specified for the Job being run. When a volume has filled
up with data, Bacula will change its VolStatus from Append to Full, and then Bacula will use the next
volume and so on. If no appendable Volume exists in the Pool, the Director will attempt to recycle an
old Volume, if there are still no appendable Volumes available, Bacula will send a message requesting the
operator to create an appropriate Volume.

Bacula keeps track of the Pool name, the volumes contained in the Pool, and a number of attributes of each
of those Volumes.

When Bacula starts, it ensures that all Pool resource definitions have been recorded in the catalog. You can
verify this by entering:

list pools

to the console program, which should print something like the following:

*list pools

Using default Catalog name=MySQL DB=bacula

+--------+---------+---------+---------+----------+-------------+

| PoolId | Name | NumVols | MaxVols | PoolType | LabelFormat |

+--------+---------+---------+---------+----------+-------------+

| 1 | Default | 3 | 0 | Backup | * |

| 2 | File | 12 | 12 | Backup | File |

+--------+---------+---------+---------+----------+-------------+

*

If you attempt to create the same Pool name a second time, Bacula will print:

Error: Pool Default already exists.

Once created, you may use the {\bf update} command to

modify many of the values in the Pool record.

15.16 Labeling Your Volumes

Bacula requires that each Volume contains a software label. There are several strategies for labeling volumes.
The one I use is to label them as they are needed by Bacula using the console program. That is when Bacula
needs a new Volume, and it does not find one in the catalog, it will send me an email message requesting
that I add Volumes to the Pool. I then use the label command in the Console program to label a new
Volume and to define it in the Pool database, after which Bacula will begin writing on the new Volume.
Alternatively, I can use the Console relabel command to relabel a Volume that is no longer used providing
it has VolStatus Purged.

Another strategy is to label a set of volumes at the start, then use them as Bacula requests them. This
is most often done if you are cycling through a set of tapes, for example using an autochanger. For more
details on recycling, please see the Automatic Volume Recycling chapter of this manual.

If you run a Bacula job, and you have no labeled tapes in the Pool, Bacula will inform you, and you can create
them ”on-the-fly” so to speak. In my case, I label my tapes with the date, for example: DLT-18April02.
See below for the details of using the label command.

110 Bacula Version 5.0.3

15.17 Labeling Volumes with the Console Program

Labeling volumes is normally done by using the console program.

1. ./bconsole

2. label

If Bacula complains that you cannot label the tape because it is already labeled, simply unmount the tape
using the unmount command in the console, then physically mount a blank tape and re-issue the label
command.

Since the physical storage media is different for each device, the label command will provide you with a list
of the defined Storage resources such as the following:

The defined Storage resources are:

1: File

2: 8mmDrive

3: DLTDrive

4: SDT-10000

Select Storage resource (1-4):

At this point, you should have a blank tape in the drive corresponding to the Storage resource that you
select.

It will then ask you for the Volume name.

Enter new Volume name:

If Bacula complains:

Media record for Volume xxxx already exists.

It means that the volume name xxxx that you entered already exists in the Media database. You can list
all the defined Media (Volumes) with the list media command. Note, the LastWritten column has been
truncated for proper printing.

+---------------+---------+--------+----------------+-----/~/-+------------+-----+

| VolumeName | MediaTyp| VolStat| VolBytes | LastWri | VolReten | Recy|

+---------------+---------+--------+----------------+---------+------------+-----+

| DLTVol0002 | DLT8000 | Purged | 56,128,042,217 | 2001-10 | 31,536,000 | 0 |

| DLT-07Oct2001 | DLT8000 | Full | 56,172,030,586 | 2001-11 | 31,536,000 | 0 |

| DLT-08Nov2001 | DLT8000 | Full | 55,691,684,216 | 2001-12 | 31,536,000 | 0 |

| DLT-01Dec2001 | DLT8000 | Full | 55,162,215,866 | 2001-12 | 31,536,000 | 0 |

| DLT-28Dec2001 | DLT8000 | Full | 57,888,007,042 | 2002-01 | 31,536,000 | 0 |

| DLT-20Jan2002 | DLT8000 | Full | 57,003,507,308 | 2002-02 | 31,536,000 | 0 |

| DLT-16Feb2002 | DLT8000 | Full | 55,772,630,824 | 2002-03 | 31,536,000 | 0 |

| DLT-12Mar2002 | DLT8000 | Full | 50,666,320,453 | 1970-01 | 31,536,000 | 0 |

| DLT-27Mar2002 | DLT8000 | Full | 57,592,952,309 | 2002-04 | 31,536,000 | 0 |

| DLT-15Apr2002 | DLT8000 | Full | 57,190,864,185 | 2002-05 | 31,536,000 | 0 |

| DLT-04May2002 | DLT8000 | Full | 60,486,677,724 | 2002-05 | 31,536,000 | 0 |

| DLT-26May02 | DLT8000 | Append | 1,336,699,620 | 2002-05 | 31,536,000 | 1 |

+---------------+---------+--------+----------------+-----/~/-+------------+-----+

Once Bacula has verified that the volume does not already exist, it will prompt you for the name of the Pool
in which the Volume (tape) is to be created. If there is only one Pool (Default), it will be automatically
selected.

If the tape is successfully labeled, a Volume record will also be created in the Pool. That is the Volume name
and all its other attributes will appear when you list the Pool. In addition, that Volume will be available for
backup if the MediaType matches what is requested by the Storage daemon.

Bacula Version 5.0.3 111

When you labeled the tape, you answered very few questions about it – principally the Volume name, and
perhaps the Slot. However, a Volume record in the catalog database (internally known as a Media record)
contains quite a few attributes. Most of these attributes will be filled in from the default values that were
defined in the Pool (i.e. the Pool holds most of the default attributes used when creating a Volume).

It is also possible to add media to the pool without physically labeling the Volumes. This can be done with
the add command. For more information, please see the Console Chapter of this manual.

112 Bacula Version 5.0.3

Chapter 16

Customizing the Configuration Files

When each of the Bacula programs starts, it reads a configuration file specified on the command line or the
default bacula-dir.conf, bacula-fd.conf, bacula-sd.conf, or console.conf for the Director daemon, the
File daemon, the Storage daemon, and the Console program respectively.

Each service (Director, Client, Storage, Console) has its own configuration file containing a set of Resource
definitions. These resources are very similar from one service to another, but may contain different directives
(records) depending on the service. For example, in the Director’s resource file, theDirector resource defines
the name of the Director, a number of global Director parameters and his password. In the File daemon
configuration file, the Director resource specifies which Directors are permitted to use the File daemon.

Before running Bacula for the first time, you must customize the configuration files for each daemon. Default
configuration files will have been created by the installation process, but you will need to modify them to
correspond to your system. An overall view of the resources can be seen in the following:

113

114 Bacula Version 5.0.3

16.1 Character Sets

Bacula is designed to handle most character sets of the world, US ASCII, German, French, Chinese, ...
However, it does this by encoding everything in UTF-8, and it expects all configuration files (including those
read on Win32 machines) to be in UTF-8 format. UTF-8 is typically the default on Linux machines, but
not on all Unix machines, nor on Windows, so you must take some care to ensure that your locale is set
properly before starting Bacula.

To ensure that Bacula configuration files can be correctly read including foreign characters the bf LANG
environment variable must end in .UTF-8. An full example is en US.UTF-8. The exact syntax may vary
a bit from OS to OS, and exactly how you define it will also vary. On most newer Win32 machines, you can
use notepad to edit the conf files, then choose output encoding UTF-8.

Bacula assumes that all filenames are in UTF-8 format on Linux and Unix machines. On Win32 they are in
Unicode (UTF-16), and will be automatically converted to UTF-8 format.

Bacula Version 5.0.3 115

16.2 Resource Directive Format

Although, you won’t need to know the details of all the directives a basic knowledge of Bacula resource
directives is essential. Each directive contained within the resource (within the braces) is composed of a
keyword followed by an equal sign (=) followed by one or more values. The keywords must be one of the
known Bacula resource record keywords, and it may be composed of upper or lower case characters and
spaces.

Each resource definition MUST contain a Name directive, and may optionally contain a Description directive.
The Name directive is used to uniquely identify the resource. The Description directive is (will be) used
during display of the Resource to provide easier human recognition. For example:

Director {

Name = "MyDir"

Description = "Main Bacula Director"

WorkingDirectory = "$HOME/bacula/bin/working"

}

Defines the Director resource with the name ”MyDir” and a working directory $HOME/bacula/bin/working.
In general, if you want spaces in a name to the right of the first equal sign (=), you must enclose that name
within double quotes. Otherwise quotes are not generally necessary because once defined, quoted strings
and unquoted strings are all equal.

16.2.1 Comments

When reading the configuration file, blank lines are ignored and everything after a hash sign (#) until the
end of the line is taken to be a comment. A semicolon (;) is a logical end of line, and anything after the
semicolon is considered as the next statement. If a statement appears on a line by itself, a semicolon is not
necessary to terminate it, so generally in the examples in this manual, you will not see many semicolons.

16.2.2 Upper and Lower Case and Spaces

Case (upper/lower) and spaces are totally ignored in the resource directive keywords (the part before the
equal sign).

Within the keyword (i.e. before the equal sign), spaces are not significant. Thus the keywords: name,
Name, and N a m e are all identical.

Spaces after the equal sign and before the first character of the value are ignored.

In general, spaces within a value are significant (not ignored), and if the value is a name, you must enclose the
name in double quotes for the spaces to be accepted. Names may contain up to 127 characters. Currently,
a name may contain any ASCII character. Within a quoted string, any character following a backslash (\)
is taken as itself (handy for inserting backslashes and double quotes (”)).

Please note, however, that Bacula resource names as well as certain other names (e.g. Volume names)
must contain only letters (including ISO accented letters), numbers, and a few special characters (space,
underscore, ...). All other characters and punctuation are invalid.

16.2.3 Including other Configuration Files

If you wish to break your configuration file into smaller pieces, you can do so by including other files using the
syntax @filename where filename is the full path and filename of another file. The @filename specification
can be given anywhere a primitive token would appear.

If you wish include all files in a specific directory, you can use the following:

116 Bacula Version 5.0.3

Include subfiles associated with configuration of clients.

They define the bulk of the Clients, Jobs, and FileSets.

Remember to "reload" the Director after adding a client file.

#

@|"sh -c ’for f in /etc/bacula/clientdefs/*.conf ; do echo @${f} ; done’"

16.2.4 Recognized Primitive Data Types

When parsing the resource directives, Bacula classifies the data according to the types listed below. The first
time you read this, it may appear a bit overwhelming, but in reality, it is all pretty logical and straightforward.

name A keyword or name consisting of alphanumeric characters, including the hyphen, underscore, and
dollar characters. The first character of a name must be a letter. A name has a maximum length
currently set to 127 bytes. Typically keywords appear on the left side of an equal (i.e. they are Bacula
keywords – i.e. Resource names or directive names). Keywords may not be quoted.

name-string A name-string is similar to a name, except that the name may be quoted and can thus contain
additional characters including spaces. Name strings are limited to 127 characters in length. Name
strings are typically used on the right side of an equal (i.e. they are values to be associated with a
keyword).

string A quoted string containing virtually any character including spaces, or a non-quoted string. A string
may be of any length. Strings are typically values that correspond to filenames, directories, or system
command names. A backslash (\) turns the next character into itself, so to include a double quote in
a string, you precede the double quote with a backslash. Likewise to include a backslash.

directory A directory is either a quoted or non-quoted string. A directory will be passed to your standard
shell for expansion when it is scanned. Thus constructs such as $HOME are interpreted to be their
correct values.

password This is a Bacula password and it is stored internally in MD5 hashed format.

integer A 32 bit integer value. It may be positive or negative.

positive integer A 32 bit positive integer value.

long integer A 64 bit integer value. Typically these are values such as bytes that can exceed 4 billion and
thus require a 64 bit value.

yes|no Either a yes or a no.

size A size specified as bytes. Typically, this is a floating point scientific input format followed by an optional
modifier. The floating point input is stored as a 64 bit integer value. If a modifier is present, it must
immediately follow the value with no intervening spaces. The following modifiers are permitted:

k 1,024 (kilobytes)

kb 1,000 (kilobytes)

m 1,048,576 (megabytes)

mb 1,000,000 (megabytes)

g 1,073,741,824 (gigabytes)

gb 1,000,000,000 (gigabytes)

time A time or duration specified in seconds. The time is stored internally as a 64 bit integer value, but it is
specified in two parts: a number part and a modifier part. The number can be an integer or a floating
point number. If it is entered in floating point notation, it will be rounded to the nearest integer. The
modifier is mandatory and follows the number part, either with or without intervening spaces. The
following modifiers are permitted:

seconds seconds

Bacula Version 5.0.3 117

minutes minutes (60 seconds)

hours hours (3600 seconds)

days days (3600*24 seconds)

weeks weeks (3600*24*7 seconds)

months months (3600*24*30 seconds)

quarters quarters (3600*24*91 seconds)

years years (3600*24*365 seconds)

Any abbreviation of these modifiers is also permitted (i.e. seconds may be specified as sec or s). A
specification of m will be taken as months.

The specification of a time may have as many number/modifier parts as you wish. For example:

1 week 2 days 3 hours 10 mins

1 month 2 days 30 sec

are valid date specifications.

16.3 Resource Types

The following table lists all current Bacula resource types. It shows what resources must be defined for each
service (daemon). The default configuration files will already contain at least one example of each permitted
resource, so you need not worry about creating all these kinds of resources from scratch.

Resource Director Client Storage Console
Autochanger No No Yes No
Catalog Yes No No No
Client Yes Yes No No
Console Yes No No Yes
Device No No Yes No
Director Yes Yes Yes Yes
FileSet Yes No No No
Job Yes No No No
JobDefs Yes No No No
Message Yes Yes Yes No
Pool Yes No No No
Schedule Yes No No No
Storage Yes No Yes No

16.4 Names, Passwords and Authorization

In order for one daemon to contact another daemon, it must authorize itself with a password. In most
cases, the password corresponds to a particular name, so both the name and the password must match to
be authorized. Passwords are plain text, any text. They are not generated by any special process; just use
random text.

The default configuration files are automatically defined for correct authorization with random passwords.
If you add to or modify these files, you will need to take care to keep them consistent.

Here is sort of a picture of what names/passwords in which files/Resources must match up:

118 Bacula Version 5.0.3

In the left column, you will find the Director, Storage, and Client resources, with their names and passwords
– these are all in bacula-dir.conf. In the right column are where the corresponding values should be found
in the Console, Storage daemon (SD), and File daemon (FD) configuration files.

Please note that the Address, fd-sd, that appears in the Storage resource of the Director, preceded with and
asterisk in the above example, is passed to the File daemon in symbolic form. The File daemon then resolves
it to an IP address. For this reason, you must use either an IP address or a fully qualified name. A name
such as localhost, not being a fully qualified name, will resolve in the File daemon to the localhost of the
File daemon, which is most likely not what is desired. The password used for the File daemon to authorize
with the Storage daemon is a temporary password unique to each Job created by the daemons and is not
specified in any .conf file.

16.5 Detailed Information for each Daemon

The details of each Resource and the directives permitted therein are described in the following chapters.

The following configuration files must be defined:

• Console – to define the resources for the Console program (user interface to the Director). It defines
which Directors are available so that you may interact with them.

• Director – to define the resources necessary for the Director. You define all the Clients and Storage
daemons that you use in this configuration file.

• Client – to define the resources for each client to be backed up. That is, you will have a separate Client
resource file on each machine that runs a File daemon.

• Storage – to define the resources to be used by each Storage daemon. Normally, you will have a single
Storage daemon that controls your tape drive or tape drives. However, if you have tape drives on
several machines, you will have at least one Storage daemon per machine.

Chapter 17

Configuring the Director

Of all the configuration files needed to run Bacula, the Director’s is the most complicated, and the one that
you will need to modify the most often as you add clients or modify the FileSets.

For a general discussion of configuration files and resources including the data types recognized by Bacula.
Please see the Configuration chapter of this manual.

17.1 Director Resource Types

Director resource type may be one of the following:

Job, JobDefs, Client, Storage, Catalog, Schedule, FileSet, Pool, Director, or Messages. We present them
here in the most logical order for defining them:

Note, everything revolves around a job and is tied to a job in one way or another.

• Director – to define the Director’s name and its access password used for authenticating the Console
program. Only a single Director resource definition may appear in the Director’s configuration file.
If you have either /dev/random or bc on your machine, Bacula will generate a random password
during the configuration process, otherwise it will be left blank.

• Job – to define the backup/restore Jobs and to tie together the Client, FileSet and Schedule resources
to be used for each Job. Normally, you will Jobs of different names corresponding to each client (i.e.
one Job per client, but a different one with a different name for each client).

• JobDefs – optional resource for providing defaults for Job resources.

• Schedule – to define when a Job is to be automatically run by Bacula’s internal scheduler. You may
have any number of Schedules, but each job will reference only one.

• FileSet – to define the set of files to be backed up for each Client. You may have any number of FileSets
but each Job will reference only one.

• Client – to define what Client is to be backed up. You will generally have multiple Client definitions.
Each Job will reference only a single client.

• Storage – to define on what physical device the Volumes should be mounted. You may have one or
more Storage definitions.

• Pool – to define the pool of Volumes that can be used for a particular Job. Most people use a single
default Pool. However, if you have a large number of clients or volumes, you may want to have multiple
Pools. Pools allow you to restrict a Job (or a Client) to use only a particular set of Volumes.

119

120 Bacula Version 5.0.3

• Catalog – to define in what database to keep the list of files and the Volume names where they are
backed up. Most people only use a single catalog. However, if you want to scale the Director to many
clients, multiple catalogs can be helpful. Multiple catalogs require a bit more management because
in general you must know what catalog contains what data. Currently, all Pools are defined in each
catalog. This restriction will be removed in a later release.

• Messages – to define where error and information messages are to be sent or logged. You may define
multiple different message resources and hence direct particular classes of messages to different users
or locations (files, ...).

17.2 The Director Resource

The Director resource defines the attributes of the Directors running on the network. In the current imple-
mentation, there is only a single Director resource, but the final design will contain multiple Directors to
maintain index and media database redundancy.

Director Start of the Director resource. One and only one director resource must be supplied.

Name = <name> The director name used by the system administrator. This directive is required.

Description = <text> The text field contains a description of the Director that will be displayed in the
graphical user interface. This directive is optional.

Password = <UA-password> Specifies the password that must be supplied for the default Bacula Con-
sole to be authorized. The same password must appear in the Director resource of the Console
configuration file. For added security, the password is never passed across the network but instead
a challenge response hash code created with the password. This directive is required. If you have
either /dev/random or bc on your machine, Bacula will generate a random password during the
configuration process, otherwise it will be left blank and you must manually supply it.

The password is plain text. It is not generated through any special process but as noted above, it is
better to use random text for security reasons.

Messages = <Messages-resource-name> The messages resource specifies where to deliver Director
messages that are not associated with a specific Job. Most messages are specific to a job and will
be directed to the Messages resource specified by the job. However, there are a few messages that can
occur when no job is running. This directive is required.

Working Directory = <Directory> This directive is mandatory and specifies a directory in which the
Director may put its status files. This directory should be used only by Bacula but may be shared by
other Bacula daemons. However, please note, if this directory is shared with other Bacula daemons
(the File daemon and Storage daemon), you must ensure that the Name given to each daemon is
unique so that the temporary filenames used do not collide. By default the Bacula configure process
creates unique daemon names by postfixing them with -dir, -fd, and -sd. Standard shell expansion
of the Directory is done when the configuration file is read so that values such as $HOME will be
properly expanded. This directive is required. The working directory specified must already exist and
be readable and writable by the Bacula daemon referencing it.

If you have specified a Director user and/or a Director group on your ./configure line with --with-dir-
user and/or --with-dir-group the Working Directory owner and group will be set to those values.

Pid Directory = <Directory> This directive is mandatory and specifies a directory in which the Director
may put its process Id file. The process Id file is used to shutdown Bacula and to prevent multiple
copies of Bacula from running simultaneously. Standard shell expansion of the Directory is done
when the configuration file is read so that values such as $HOME will be properly expanded.

The PID directory specified must already exist and be readable and writable by the Bacula daemon
referencing it

Typically on Linux systems, you will set this to: /var/run. If you are not installing Bacula in the
system directories, you can use the Working Directory as defined above. This directive is required.

Bacula Version 5.0.3 121

Scripts Directory = <Directory> This directive is optional and, if defined, specifies a directory in which
the Director will look for the Python startup script DirStartup.py. This directory may be shared by
other Bacula daemons. Standard shell expansion of the directory is done when the configuration file
is read so that values such as $HOME will be properly expanded.

QueryFile = <Path> This directive is mandatory and specifies a directory and file in which the Director
can find the canned SQL statements for the Query command of the Console. Standard shell expansion
of the Path is done when the configuration file is read so that values such as $HOME will be properly
expanded. This directive is required.

Heartbeat Interval = <time-interval> This directive is optional and if specified will cause the Director
to set a keepalive interval (heartbeat) in seconds on each of the sockets it opens for the Client resource.
This value will override any specified at the Director level. It is implemented only on systems (Linux,
...) that provide the setsockopt TCP KEEPIDLE function. The default value is zero, which means
no change is made to the socket.

Maximum Concurrent Jobs = <number> where <number> is the maximum number of total Director
Jobs that should run concurrently. The default is set to 1, but you may set it to a larger number.

The Volume format becomes more complicated with multiple simultaneous jobs, consequently, restores
may take longer if Bacula must sort through interleaved volume blocks from multiple simultaneous
jobs. This can be avoided by having each simultaneous job write to a different volume or by using data
spooling, which will first spool the data to disk simultaneously, then write one spool file at a time to
the volume thus avoiding excessive interleaving of the different job blocks.

FD Connect Timeout = <time> where time is the time that the Director should continue attempting
to contact the File daemon to start a job, and after which the Director will cancel the job. The default
is 30 minutes.

SD Connect Timeout = <time> where time is the time that the Director should continue attempting
to contact the Storage daemon to start a job, and after which the Director will cancel the job. The
default is 30 minutes.

DirAddresses = <IP-address-specification> Specify the ports and addresses on which the Director
daemon will listen for Bacula Console connections. Probably the simplest way to explain this is to
show an example:

DirAddresses = {

ip = { addr = 1.2.3.4; port = 1205;}

ipv4 = {

addr = 1.2.3.4; port = http;}

ipv6 = {

addr = 1.2.3.4;

port = 1205;

}

ip = {

addr = 1.2.3.4

port = 1205

}

ip = { addr = 1.2.3.4 }

ip = { addr = 201:220:222::2 }

ip = {

addr = bluedot.thun.net

}

}

where ip, ip4, ip6, addr, and port are all keywords. Note, that the address can be specified as either a
dotted quadruple, or IPv6 colon notation, or as a symbolic name (only in the ip specification). Also,
port can be specified as a number or as the mnemonic value from the /etc/services file. If a port is not
specified, the default will be used. If an ip section is specified, the resolution can be made either by
IPv4 or IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted, and likewise with ip6.

Please note that if you use the DirAddresses directive, you must not use either a DirPort or a DirAddress
directive in the same resource.

DirPort = <port-number> Specify the port (a positive integer) on which the Director daemon will listen
for Bacula Console connections. This same port number must be specified in the Director resource of
the Console configuration file. The default is 9101, so normally this directive need not be specified.
This directive should not be used if you specify DirAddresses (N.B plural) directive.

122 Bacula Version 5.0.3

DirAddress = <IP-Address> This directive is optional, but if it is specified, it will cause the Director
server (for the Console program) to bind to the specified IP-Address, which is either a domain name
or an IP address specified as a dotted quadruple in string or quoted string format. If this directive is not
specified, the Director will bind to any available address (the default). Note, unlike the DirAddresses
specification noted above, this directive only permits a single address to be specified. This directive
should not be used if you specify a DirAddresses (N.B. plural) directive.

DirSourceAddress = <IP-Address> This record is optional, and if it is specified, it will cause the
Director server (when initiating connections to a storage or file daemon) to source its connections from
the specified address. Only a single IP address may be specified. If this record is not specified, the
Director server will source its outgoing connections according to the system routing table (the default).

Statistics Retention = <time> The Statistics Retention directive defines the length of time that
Bacula will keep statistics job records in the Catalog database after the Job End time. (In JobHistory

table) When this time period expires, and if user runs prune stats command, Bacula will prune
(remove) Job records that are older than the specified period.

Theses statistics records aren’t use for restore purpose, but mainly for capacity planning, billings, etc.
See Statistics chapteror additional information.

See the Configuration chapter of this manual for additional details of time specification.

The default is 5 years.

VerId = <string> where <string> is an identifier which can be used for support purpose. This string is
displayed using the version command.

MaximumConsoleConnections = <number> where <number> is the maximum number of Console
Connections that could run concurrently. The default is set to 20, but you may set it to a larger
number.

The following is an example of a valid Director resource definition:

Director {

Name = HeadMan

WorkingDirectory = "$HOME/bacula/bin/working"

Password = UA_password

PidDirectory = "$HOME/bacula/bin/working"

QueryFile = "$HOME/bacula/bin/query.sql"

Messages = Standard

}

17.3 The Job Resource

The Job resource defines a Job (Backup, Restore, ...) that Bacula must perform. Each Job resource definition
contains the name of a Client and a FileSet to backup, the Schedule for the Job, where the data are to be
stored, and what media Pool can be used. In effect, each Job resource must specify What, Where, How,
and When or FileSet, Storage, Backup/Restore/Level, and Schedule respectively. Note, the FileSet must be
specified for a restore job for historical reasons, but it is no longer used.

Only a single type (Backup, Restore, ...) can be specified for any job. If you want to backup multiple
FileSets on the same Client or multiple Clients, you must define a Job for each one.

Note, you define only a single Job to do the Full, Differential, and Incremental backups since the different
backup levels are tied together by a unique Job name. Normally, you will have only one Job per Client, but
if a client has a really huge number of files (more than several million), you might want to split it into to
Jobs each with a different FileSet covering only part of the total files.

Multiple Storage daemons are not currently supported for Jobs, so if you do want to use multiple storage
daemons, you will need to create a different Job and ensure that for each Job that the combination of Client
and FileSet are unique. The Client and FileSet are what Bacula uses to restore a client, so if there are
multiple Jobs with the same Client and FileSet or multiple Storage daemons that are used, the restore will

Bacula Version 5.0.3 123

not work. This problem can be resolved by defining multiple FileSet definitions (the names must be different,
but the contents of the FileSets may be the same).

Job Start of the Job resource. At least one Job resource is required.

Name = <name> The Job name. This name can be specified on the Run command in the console
program to start a job. If the name contains spaces, it must be specified between quotes. It is
generally a good idea to give your job the same name as the Client that it will backup. This permits
easy identification of jobs.

When the job actually runs, the unique Job Name will consist of the name you specify here followed
by the date and time the job was scheduled for execution. This directive is required.

Enabled = <yes|no> This directive allows you to enable or disable automatic execution via the scheduler
of a Job.

Type = <job-type> The Type directive specifies the Job type, which may be one of the following:
Backup, Restore, Verify, or Admin. This directive is required. Within a particular Job Type,
there are also Levels as discussed in the next item.

Backup Run a backup Job. Normally you will have at least one Backup job for each client you want
to save. Normally, unless you turn off cataloging, most all the important statistics and data
concerning files backed up will be placed in the catalog.

Restore Run a restore Job. Normally, you will specify only one Restore job which acts as a sort of
prototype that you will modify using the console program in order to perform restores. Although
certain basic information from a Restore job is saved in the catalog, it is very minimal compared
to the information stored for a Backup job – for example, no File database entries are generated
since no Files are saved.

Restore jobs cannot be automatically started by the scheduler as is the case for Backup, Verify
and Admin jobs. To restore files, you must use the restore command in the console.

Verify Run a verify Job. In general, verify jobs permit you to compare the contents of the catalog to
the file system, or to what was backed up. In addition, to verifying that a tape that was written
can be read, you can also use verify as a sort of tripwire intrusion detection.

Admin Run an admin Job. An Admin job can be used to periodically run catalog pruning, if you
do not want to do it at the end of each Backup Job. Although an Admin job is recorded in the
catalog, very little data is saved.

Level = <job-level> The Level directive specifies the default Job level to be run. Each different Job
Type (Backup, Restore, ...) has a different set of Levels that can be specified. The Level is normally
overridden by a different value that is specified in the Schedule resource. This directive is not required,
but must be specified either by a Level directive or as an override specified in the Schedule resource.

For a Backup Job, the Level may be one of the following:

Full When the Level is set to Full all files in the FileSet whether or not they have changed will be
backed up.

Incremental When the Level is set to Incremental all files specified in the FileSet that have changed
since the last successful backup of the the same Job using the same FileSet and Client, will be
backed up. If the Director cannot find a previous valid Full backup then the job will be upgraded
into a Full backup. When the Director looks for a valid backup record in the catalog database, it
looks for a previous Job with:

• The same Job name.

• The same Client name.

• The same FileSet (any change to the definition of the FileSet such as adding or deleting a file
in the Include or Exclude sections constitutes a different FileSet.

• The Job was a Full, Differential, or Incremental backup.

• The Job terminated normally (i.e. did not fail or was not canceled).

• The Job started no longer ago than Max Full Interval.

124 Bacula Version 5.0.3

If all the above conditions do not hold, the Director will upgrade the Incremental to a Full save.
Otherwise, the Incremental backup will be performed as requested.

The File daemon (Client) decides which files to backup for an Incremental backup by comparing
start time of the prior Job (Full, Differential, or Incremental) against the time each file was last
”modified” (st mtime) and the time its attributes were last ”changed”(st ctime). If the file was
modified or its attributes changed on or after this start time, it will then be backed up.

Some virus scanning software may change st ctime while doing the scan. For example, if the
virus scanning program attempts to reset the access time (st atime), which Bacula does not use,
it will cause st ctime to change and hence Bacula will backup the file during an Incremental or
Differential backup. In the case of Sophos virus scanning, you can prevent it from resetting the
access time (st atime) and hence changing st ctime by using the --no-reset-atime option. For
other software, please see their manual.

When Bacula does an Incremental backup, all modified files that are still on the system are
backed up. However, any file that has been deleted since the last Full backup remains in the
Bacula catalog, which means that if between a Full save and the time you do a restore, some files
are deleted, those deleted files will also be restored. The deleted files will no longer appear in the
catalog after doing another Full save.

In addition, if you move a directory rather than copy it, the files in it do not have their modification
time (st mtime) or their attribute change time (st ctime) changed. As a consequence, those files
will probably not be backed up by an Incremental or Differential backup which depend solely on
these time stamps. If you move a directory, and wish it to be properly backed up, it is generally
preferable to copy it, then delete the original.

However, to manage deleted files or directories changes in the catalog during an Incremental
backup you can use accuratemode. This is quite memory consuming process. See Accurate mode
for more details.

Differential When the Level is set to Differential all files specified in the FileSet that have changed
since the last successful Full backup of the same Job will be backed up. If the Director cannot find
a valid previous Full backup for the same Job, FileSet, and Client, backup, then the Differential
job will be upgraded into a Full backup. When the Director looks for a valid Full backup record
in the catalog database, it looks for a previous Job with:

• The same Job name.

• The same Client name.

• The same FileSet (any change to the definition of the FileSet such as adding or deleting a file
in the Include or Exclude sections constitutes a different FileSet.

• The Job was a FULL backup.

• The Job terminated normally (i.e. did not fail or was not canceled).

• The Job started no longer ago than Max Full Interval.

If all the above conditions do not hold, the Director will upgrade the Differential to a Full save.
Otherwise, the Differential backup will be performed as requested.

The File daemon (Client) decides which files to backup for a differential backup by comparing the
start time of the prior Full backup Job against the time each file was last ”modified” (st mtime)
and the time its attributes were last ”changed” (st ctime). If the file was modified or its attributes
were changed on or after this start time, it will then be backed up. The start time used is displayed
after the Since on the Job report. In rare cases, using the start time of the prior backup may
cause some files to be backed up twice, but it ensures that no change is missed. As with the
Incremental option, you should ensure that the clocks on your server and client are synchronized
or as close as possible to avoid the possibility of a file being skipped. Note, on versions 1.33 or
greater Bacula automatically makes the necessary adjustments to the time between the server
and the client so that the times Bacula uses are synchronized.

When Bacula does a Differential backup, all modified files that are still on the system are backed
up. However, any file that has been deleted since the last Full backup remains in the Bacula
catalog, which means that if between a Full save and the time you do a restore, some files are
deleted, those deleted files will also be restored. The deleted files will no longer appear in the
catalog after doing another Full save. However, to remove deleted files from the catalog during a
Differential backup is quite a time consuming process and not currently implemented in Bacula.
It is, however, a planned future feature.

As noted above, if you move a directory rather than copy it, the files in it do not have their
modification time (st mtime) or their attribute change time (st ctime) changed. As a consequence,

Bacula Version 5.0.3 125

those files will probably not be backed up by an Incremental or Differential backup which depend
solely on these time stamps. If you move a directory, and wish it to be properly backed up, it is
generally preferable to copy it, then delete the original. Alternatively, you can move the directory,
then use the touch program to update the timestamps.

However, to manage deleted files or directories changes in the catalog during an Differential backup
you can use accurate mode. This is quite memory consuming process. See Accurate mode for
more details.

Every once and a while, someone asks why we need Differential backups as long as Incremental
backups pickup all changed files. There are possibly many answers to this question, but the
one that is the most important for me is that a Differential backup effectively merges all the
Incremental and Differential backups since the last Full backup into a single Differential backup.
This has two effects: 1. It gives some redundancy since the old backups could be used if the
merged backup cannot be read. 2. More importantly, it reduces the number of Volumes that
are needed to do a restore effectively eliminating the need to read all the volumes on which the
preceding Incremental and Differential backups since the last Full are done.

For a Restore Job, no level needs to be specified.

For a Verify Job, the Level may be one of the following:

InitCatalog does a scan of the specified FileSet and stores the file attributes in the Catalog database.
Since no file data is saved, you might ask why you would want to do this. It turns out to be a very
simple and easy way to have a Tripwire like feature using Bacula. In other words, it allows you
to save the state of a set of files defined by the FileSet and later check to see if those files have
been modified or deleted and if any new files have been added. This can be used to detect system
intrusion. Typically you would specify a FileSet that contains the set of system files that should
not change (e.g. /sbin, /boot, /lib, /bin, ...). Normally, you run the InitCatalog level verify
one time when your system is first setup, and then once again after each modification (upgrade)
to your system. Thereafter, when your want to check the state of your system files, you use a
Verify level = Catalog. This compares the results of your InitCatalog with the current state
of the files.

Catalog Compares the current state of the files against the state previously saved during an InitCat-
alog. Any discrepancies are reported. The items reported are determined by the verify options
specified on the Include directive in the specified FileSet (see the FileSet resource below for
more details). Typically this command will be run once a day (or night) to check for any changes
to your system files.

Please note! If you run two Verify Catalog jobs on the same client at the same time, the results
will certainly be incorrect. This is because Verify Catalog modifies the Catalog database while
running in order to track new files.

VolumeToCatalog This level causes Bacula to read the file attribute data written to the Volume from
the last Job. The file attribute data are compared to the values saved in the Catalog database and
any differences are reported. This is similar to the Catalog level except that instead of comparing
the disk file attributes to the catalog database, the attribute data written to the Volume is read
and compared to the catalog database. Although the attribute data including the signatures
(MD5 or SHA1) are compared, the actual file data is not compared (it is not in the catalog).

Please note! If you run two Verify VolumeToCatalog jobs on the same client at the same time,
the results will certainly be incorrect. This is because the Verify VolumeToCatalog modifies the
Catalog database while running.

DiskToCatalog This level causes Bacula to read the files as they currently are on disk, and to compare
the current file attributes with the attributes saved in the catalog from the last backup for the job
specified on the VerifyJob directive. This level differs from the Catalog level described above
by the fact that it doesn’t compare against a previous Verify job but against a previous backup.
When you run this level, you must supply the verify options on your Include statements. Those
options determine what attribute fields are compared.

This command can be very useful if you have disk problems because it will compare the current
state of your disk against the last successful backup, which may be several jobs.

Note, the current implementation (1.32c) does not identify files that have been deleted.

Accurate = <yes|no> In accurate mode, the File daemon knowns exactly which files were present after
the last backup. So it is able to handle deleted or renamed files.

126 Bacula Version 5.0.3

When restoring a FileSet for a specified date (including ”most recent”), Bacula is able to restore exactly
the files and directories that existed at the time of the last backup prior to that date including ensuring
that deleted files are actually deleted, and renamed directories are restored properly.

In this mode, the File daemon must keep data concerning all files in memory. So you do not have
sufficient memory, the restore may either be terribly slow or fail.

For 500.000 files (a typical desktop linux system), it will require approximately 64 Megabytes of RAM
on your File daemon to hold the required information.

Verify Job = <Job-Resource-Name> If you run a verify job without this directive, the last job run will
be compared with the catalog, which means that you must immediately follow a backup by a verify
command. If you specify a Verify Job Bacula will find the last job with that name that ran. This
permits you to run all your backups, then run Verify jobs on those that you wish to be verified (most
often a VolumeToCatalog) so that the tape just written is re-read.

JobDefs = <JobDefs-Resource-Name> If a JobDefs-Resource-Name is specified, all the values con-
tained in the named JobDefs resource will be used as the defaults for the current Job. Any value that
you explicitly define in the current Job resource, will override any defaults specified in the JobDefs
resource. The use of this directive permits writing much more compact Job resources where the bulk of
the directives are defined in one or more JobDefs. This is particularly useful if you have many similar
Jobs but with minor variations such as different Clients. A simple example of the use of JobDefs is
provided in the default bacula-dir.conf file.

Bootstrap = <bootstrap-file> The Bootstrap directive specifies a bootstrap file that, if provided, will
be used during Restore Jobs and is ignored in other Job types. The bootstrap file contains the list of
tapes to be used in a restore Job as well as which files are to be restored. Specification of this directive
is optional, and if specified, it is used only for a restore job. In addition, when running a Restore job
from the console, this value can be changed.

If you use the Restore command in the Console program, to start a restore job, the bootstrap file
will be created automatically from the files you select to be restored.

For additional details of the bootstrap file, please see Restoring Files with the Bootstrap File chapter
of this manual.

Write Bootstrap = <bootstrap-file-specification> The writebootstrap directive specifies a file
name where Bacula will write a bootstrap file for each Backup job run. This directive applies only to
Backup Jobs. If the Backup job is a Full save, Bacula will erase any current contents of the specified
file before writing the bootstrap records. If the Job is an Incremental or Differential save, Bacula will
append the current bootstrap record to the end of the file.

Using this feature, permits you to constantly have a bootstrap file that can recover the current state
of your system. Normally, the file specified should be a mounted drive on another machine, so that
if your hard disk is lost, you will immediately have a bootstrap record available. Alternatively, you
should copy the bootstrap file to another machine after it is updated. Note, it is a good idea to write a
separate bootstrap file for each Job backed up including the job that backs up your catalog database.

If the bootstrap-file-specification begins with a vertical bar (|), Bacula will use the specification
as the name of a program to which it will pipe the bootstrap record. It could for example be a shell
script that emails you the bootstrap record.

On versions 1.39.22 or greater, before opening the file or executing the specified command, Bacula
performs character substitution like in RunScript directive. To automatically manage your bootstrap
files, you can use this in your JobDefs resources:

JobDefs {

Write Bootstrap = "%c_%n.bsr"

...

}

For more details on using this file, please see the chapter entitled The Bootstrap File of this manual.

Client = <client-resource-name> The Client directive specifies the Client (File daemon) that will be
used in the current Job. Only a single Client may be specified in any one Job. The Client runs on the
machine to be backed up, and sends the requested files to the Storage daemon for backup, or receives
them when restoring. For additional details, see the Client Resource section of this chapter. This
directive is required.

Bacula Version 5.0.3 127

FileSet = <FileSet-resource-name> The FileSet directive specifies the FileSet that will be used in the
current Job. The FileSet specifies which directories (or files) are to be backed up, and what options
to use (e.g. compression, ...). Only a single FileSet resource may be specified in any one Job. For
additional details, see the FileSet Resource section of this chapter. This directive is required.

Base = <job-resource-name, ...> The Base directive permits to specify the list of jobs that will be used
during Full backup as base. This directive is optional. See the Base Job chapter for more information.

Messages = <messages-resource-name> The Messages directive defines what Messages resource
should be used for this job, and thus how and where the various messages are to be delivered. For
example, you can direct some messages to a log file, and others can be sent by email. For additional
details, see the Messages Resource Chapter of this manual. This directive is required.

Pool = <pool-resource-name> The Pool directive defines the pool of Volumes where your data can be
backed up. Many Bacula installations will use only the Default pool. However, if you want to specify
a different set of Volumes for different Clients or different Jobs, you will probably want to use Pools.
For additional details, see the Pool Resource section of this chapter. This directive is required.

Full Backup Pool = <pool-resource-name> The Full Backup Pool specifies a Pool to be used for Full
backups. It will override any Pool specification during a Full backup. This directive is optional.

Differential Backup Pool = <pool-resource-name> The Differential Backup Pool specifies a Pool to
be used for Differential backups. It will override any Pool specification during a Differential backup.
This directive is optional.

Incremental Backup Pool = <pool-resource-name> The Incremental Backup Pool specifies a Pool to
be used for Incremental backups. It will override any Pool specification during an Incremental backup.
This directive is optional.

Schedule = <schedule-name> The Schedule directive defines what schedule is to be used for the Job.
The schedule in turn determines when the Job will be automatically started and what Job level (i.e.
Full, Incremental, ...) is to be run. This directive is optional, and if left out, the Job can only be started
manually using the Console program. Although you may specify only a single Schedule resource for
any one job, the Schedule resource may contain multiple Run directives, which allow you to run the
Job at many different times, and each run directive permits overriding the default Job Level Pool,
Storage, and Messages resources. This gives considerable flexibility in what can be done with a single
Job. For additional details, see the Schedule Resource Chapter of this manual.

Storage = <storage-resource-name> The Storage directive defines the name of the storage services
where you want to backup the FileSet data. For additional details, see the Storage Resource Chapter
of this manual. The Storage resource may also be specified in the Job’s Pool resource, in which case
the value in the Pool resource overrides any value in the Job. This Storage resource definition is not
required by either the Job resource or in the Pool, but it must be specified in one or the other, if not
an error will result.

Max Start Delay = <time> The time specifies the maximum delay between the scheduled time and the
actual start time for the Job. For example, a job can be scheduled to run at 1:00am, but because
other jobs are running, it may wait to run. If the delay is set to 3600 (one hour) and the job has not
begun to run by 2:00am, the job will be canceled. This can be useful, for example, to prevent jobs
from running during day time hours. The default is 0 which indicates no limit.

Max Run Time = <time> The time specifies the maximum allowed time that a job may run, counted
from when the job starts, (not necessarily the same as when the job was scheduled).

Incremental—Differential Max Wait Time = <time> Theses directives have been deprecated in fa-
vor of Incremental|Differential Max Run Time since bacula 2.3.18.

Incremental Max Run Time = <time> The time specifies the maximum allowed time that an Incre-
mental backup job may run, counted from when the job starts, (not necessarily the same as when the
job was scheduled).

Differential Max Wait Time = <time> The time specifies the maximum allowed time that a Differen-
tial backup job may run, counted from when the job starts, (not necessarily the same as when the job
was scheduled).

128 Bacula Version 5.0.3

Max Run Sched Time = <time> The time specifies the maximum allowed time that a job may run,
counted from when the job was scheduled. This can be useful to prevent jobs from running during
working hours. We can see it like Max Start Delay + Max Run Time.

Max Wait Time = <time> The time specifies the maximum allowed time that a job may block waiting
for a resource (such as waiting for a tape to be mounted, or waiting for the storage or file daemons to
perform their duties), counted from the when the job starts, (not necessarily the same as when the
job was scheduled). This directive works as expected since bacula 2.3.18.

Figure 17.1: Job time control directives

Max Full Interval = <time> The time specifies the maximum allowed age (counting from start time)
of the most recent successful Full backup that is required in order to run Incremental or Differential
backup jobs. If the most recent Full backup is older than this interval, Incremental and Differential
backups will be upgraded to Full backups automatically. If this directive is not present, or specified as
0, then the age of the previous Full backup is not considered.

Prefer Mounted Volumes = <yes|no> If the Prefer Mounted Volumes directive is set to yes (default
yes), the Storage daemon is requested to select either an Autochanger or a drive with a valid Volume
already mounted in preference to a drive that is not ready. This means that all jobs will attempt to
append to the same Volume (providing the Volume is appropriate – right Pool, ... for that job), unless
you are using multiple pools. If no drive with a suitable Volume is available, it will select the first
available drive. Note, any Volume that has been requested to be mounted, will be considered valid as
a mounted volume by another job. This if multiple jobs start at the same time and they all prefer
mounted volumes, the first job will request the mount, and the other jobs will use the same volume.

If the directive is set to no, the Storage daemon will prefer finding an unused drive, otherwise, each job
started will append to the same Volume (assuming the Pool is the same for all jobs). Setting Prefer
Mounted Volumes to no can be useful for those sites with multiple drive autochangers that prefer to
maximize backup throughput at the expense of using additional drives and Volumes. This means that
the job will prefer to use an unused drive rather than use a drive that is already in use.

Despite the above, we recommend against setting this directive to no since it tends to add a lot of
swapping of Volumes between the different drives and can easily lead to deadlock situations in the
Storage daemon. We will accept bug reports against it, but we cannot guarantee that we will be able
to fix the problem in a reasonable time.

A better alternative for using multiple drives is to use multiple pools so that Bacula will be forced to
mount Volumes from those Pools on different drives.

Prune Jobs = <yes|no> Normally, pruning of Jobs from the Catalog is specified on a Pool by Pool basis
in the Pool resource with the AutoPrune directive. If this directive is specified (not normally) and
the value is yes, it will override the value specified in the Pool resource. The default is no.

Prune Files = <yes|no> Normally, pruning of Files from the Catalog is specified on a Pool by Pool basis
in the Pool resource with the AutoPrune directive. If this directive is specified (not normally) and
the value is yes, it will override the value specified in the Pool resource. The default is no.

Bacula Version 5.0.3 129

Prune Volumes = <yes|no> Normally, pruning of Volumes from the Catalog is specified on a Pool by
Pool basis in the Pool resource with the AutoPrune directive. If this directive is specified (not
normally) and the value is yes, it will override the value specified in the Pool resource. The default is
no.

RunScript {<body-of-runscript>} The RunScript directive behaves like a resource in that it requires
opening and closing braces around a number of directives that make up the body of the runscript.

The specified Command (see below for details) is run as an external program prior or after the current
Job. This is optional. By default, the program is executed on the Client side like in ClientRunXXXJob.

Console options are special commands that are sent to the director instead of the OS. At this time,
console command ouputs are redirected to log with the jobid 0.

You can use following console command : delete, disable, enable, estimate, list, llist, memory,
prune, purge, reload, status, setdebug, show, time, trace, update, version, .client, .jobs,
.pool, .storage. See console chapter for more information. You need to specify needed information
on command line, nothing will be prompted. Example :

Console = "prune files client=%c"

Console = "update stats age=3"

You can specify more than one Command/Console option per RunScript.

You can use following options may be specified in the body of the runscript:

Options Value Default Information

Runs On Success Yes/No Yes Run command if JobStatus is successful
Runs On Failure Yes/No No Run command if JobStatus isn’t successful
Runs On Client Yes/No Yes Run command on client
Runs When Before—After—Always—AfterVSS Never When run commands

Fail Job On Error Yes/No Yes Fail job if script returns something different
Command Path to your script
Console Console command

Any output sent by the command to standard output will be included in the Bacula job report. The
command string must be a valid program name or name of a shell script.

In addition, the command string is parsed then fed to the OS, which means that the path will be
searched to execute your specified command, but there is no shell interpretation, as a consequence, if
you invoke complicated commands or want any shell features such as redirection or piping, you must
call a shell script and do it inside that script.

Before submitting the specified command to the operating system, Bacula performs character substi-
tution of the following characters:

%% = %

%c = Client’s name

%d = Director’s name

%e = Job Exit Status

%i = JobId

%j = Unique Job id

%l = Job Level

%n = Job name

%s = Since time

%t = Job type (Backup, ...)

%v = Volume name (Only on director side)

The Job Exit Status code %e edits the following values:

• OK

• Error

• Fatal Error

• Canceled

130 Bacula Version 5.0.3

• Differences

• Unknown term code

Thus if you edit it on a command line, you will need to enclose it within some sort of quotes.

You can use these following shortcuts:

Keyword RunsOnSuccess RunsOnFailure FailJobOnError Runs On Client RunsWhen
Run Before Job Yes No Before
Run After Job Yes No No After

Run After Failed Job No Yes No After
Client Run Before Job Yes Yes Before
Client Run After Job Yes No Yes After

Examples:

RunScript {

RunsWhen = Before

FailJobOnError = No

Command = "/etc/init.d/apache stop"

}

RunScript {

RunsWhen = After

RunsOnFailure = yes

Command = "/etc/init.d/apache start"

}

Notes about ClientRunBeforeJob

For compatibility reasons, with this shortcut, the command is executed directly when the client recieve
it. And if the command is in error, other remote runscripts will be discarded. To be sure that all
commands will be sent and executed, you have to use RunScript syntax.

Special Windows Considerations

You can run scripts just after snapshots initializations with AfterVSS keyword.

In addition, for a Windows client on version 1.33 and above, please take note that you must ensure a
correct path to your script. The script or program can be a .com, .exe or a .bat file. If you just put the
program name in then Bacula will search using the same rules that cmd.exe uses (current directory,
Bacula bin directory, and PATH). It will even try the different extensions in the same order as cmd.exe.
The command can be anything that cmd.exe or command.com will recognize as an executable file.

However, if you have slashes in the program name then Bacula figures you are fully specifying the
name, so you must also explicitly add the three character extension.

The command is run in a Win32 environment, so Unix like commands will not work unless you have
installed and properly configured Cygwin in addition to and separately from Bacula.

The System %Path% will be searched for the command. (under the environment variable dialog
you have have both System Environment and User Environment, we believe that only the System
environment will be available to bacula-fd, if it is running as a service.)

System environment variables can be referenced with %var% and used as either part of the command
name or arguments.

So if you have a script in the Bacula
bin directory then the following lines should work fine:

Client Run Before Job = systemstate

or

Client Run Before Job = systemstate.bat

or

Client Run Before Job = "systemstate"

or

Client Run Before Job = "systemstate.bat"

or

ClientRunBeforeJob = "\"C:/Program Files/Bacula/systemstate.bat\""

Bacula Version 5.0.3 131

The outer set of quotes is removed when the configuration file is parsed. You need to escape the inner
quotes so that they are there when the code that parses the command line for execution runs so it can
tell what the program name is.

ClientRunBeforeJob = "\"C:/Program Files/Software

Vendor/Executable\" /arg1 /arg2 \"foo bar\""

The special characters

&<>()@^|

will need to be quoted, if they are part of a filename or argument.

If someone is logged in, a blank ”command” window running the commands will be present during the
execution of the command.

Some Suggestions from Phil Stracchino for running on Win32 machines with the native Win32 File
daemon:

1. You might want the ClientRunBeforeJob directive to specify a .bat file which runs the actual
client-side commands, rather than trying to run (for example) regedit /e directly.

2. The batch file should explicitly ’exit 0’ on successful completion.

3. The path to the batch file should be specified in Unix form:

ClientRunBeforeJob = ”c:/bacula/bin/systemstate.bat”

rather than DOS/Windows form:

ClientRunBeforeJob =

”c:\bacula\bin\systemstate.bat” INCORRECT

For Win32, please note that there are certain limitations:

ClientRunBeforeJob = ”C:/Program Files/Bacula/bin/pre-exec.bat”

Lines like the above do not work because there are limitations of cmd.exe that is used to execute the
command. Bacula prefixes the string you supply with cmd.exe /c . To test that your command works
you should type cmd /c ”C:/Program Files/test.exe” at a cmd prompt and see what happens.
Once the command is correct insert a backslash (\) before each double quote (”), and then put quotes
around the whole thing when putting it in the director’s .conf file. You either need to have only one
set of quotes or else use the short name and don’t put quotes around the command path.

Below is the output from cmd’s help as it relates to the command line passed to the /c option.

If /C or /K is specified, then the remainder of the command line after the switch is processed as a
command line, where the following logic is used to process quote (”) characters:

1. If all of the following conditions are met, then quote characters on the command line are preserved:

• no /S switch.

• exactly two quote characters.

• no special characters between the two quote characters, where special is one of:

&<>()@^|

• there are one or more whitespace characters between the the two quote characters.

• the string between the two quote characters is the name of an executable file.

2. Otherwise, old behavior is to see if the first character is a quote character and if so, strip the
leading character and remove the last quote character on the command line, preserving any text
after the last quote character.

The following example of the use of the Client Run Before Job directive was submitted by a user:
You could write a shell script to back up a DB2 database to a FIFO. The shell script is:

#!/bin/sh

===== backupdb.sh

DIR=/u01/mercuryd

mkfifo $DIR/dbpipe

db2 BACKUP DATABASE mercuryd TO $DIR/dbpipe WITHOUT PROMPTING &

sleep 1

132 Bacula Version 5.0.3

The following line in the Job resource in the bacula-dir.conf file:

Client Run Before Job = "su - mercuryd -c \"/u01/mercuryd/backupdb.sh ’%t’

’%l’\""

When the job is run, you will get messages from the output of the script stating that the backup has
started. Even though the command being run is backgrounded with &, the job will block until the
”db2 BACKUP DATABASE” command, thus the backup stalls.

To remedy this situation, the ”db2 BACKUP DATABASE” line should be changed to the following:

db2 BACKUP DATABASE mercuryd TO $DIR/dbpipe WITHOUT PROMPTING > $DIR/backup.log

2>&1 < /dev/null &

It is important to redirect the input and outputs of a backgrounded command to /dev/null to prevent
the script from blocking.

Run Before Job = <command> The specified command is run as an external program prior to running
the current Job. This directive is not required, but if it is defined, and if the exit code of the program
run is non-zero, the current Bacula job will be canceled.

Run Before Job = "echo test"

it’s equivalent to :

RunScript {

Command = "echo test"

RunsOnClient = No

RunsWhen = Before

}

Lutz Kittler has pointed out that using the RunBeforeJob directive can be a simple way to modify your
schedules during a holiday. For example, suppose that you normally do Full backups on Fridays, but
Thursday and Friday are holidays. To avoid having to change tapes between Thursday and Friday when
no one is in the office, you can create a RunBeforeJob that returns a non-zero status on Thursday and
zero on all other days. That way, the Thursday job will not run, and on Friday the tape you inserted
on Wednesday before leaving will be used.

Run After Job = <command> The specified command is run as an external program if the current
job terminates normally (without error or without being canceled). This directive is not required. If
the exit code of the program run is non-zero, Bacula will print a warning message. Before submitting
the specified command to the operating system, Bacula performs character substitution as described
above for the RunScript directive.

An example of the use of this directive is given in the Tips Chapter of this manual.

See the Run After Failed Job if you want to run a script after the job has terminated with any
non-normal status.

Run After Failed Job = <command> The specified command is run as an external program after
the current job terminates with any error status. This directive is not required. The command string
must be a valid program name or name of a shell script. If the exit code of the program run is non-
zero, Bacula will print a warning message. Before submitting the specified command to the operating
system, Bacula performs character substitution as described above for the RunScript directive. Note,
if you wish that your script will run regardless of the exit status of the Job, you can use this :

RunScript {

Command = "echo test"

RunsWhen = After

RunsOnFailure = yes

RunsOnClient = no

RunsOnSuccess = yes # default, you can drop this line

}

Bacula Version 5.0.3 133

An example of the use of this directive is given in the Tips Chapter of this manual.

Client Run Before Job = <command> This directive is the same as Run Before Job except that
the program is run on the client machine. The same restrictions apply to Unix systems as noted above
for the RunScript.

Client Run After Job = <command> The specified command is run on the client machine as soon
as data spooling is complete in order to allow restarting applications on the client as soon as possible.
.

Note, please see the notes above in RunScript concerning Windows clients.

Rerun Failed Levels = <yes|no> If this directive is set to yes (default no), and Bacula detects that a
previous job at a higher level (i.e. Full or Differential) has failed, the current job level will be upgraded
to the higher level. This is particularly useful for Laptops where they may often be unreachable, and
if a prior Full save has failed, you wish the very next backup to be a Full save rather than whatever
level it is started as.

There are several points that must be taken into account when using this directive: first, a failed job
is defined as one that has not terminated normally, which includes any running job of the same name
(you need to ensure that two jobs of the same name do not run simultaneously); secondly, the Ignore
FileSet Changes directive is not considered when checking for failed levels, which means that any
FileSet change will trigger a rerun.

Spool Data = <yes|no> If this directive is set to yes (default no), the Storage daemon will be requested
to spool the data for this Job to disk rather than write it directly to tape. Once all the data arrives or
the spool files’ maximum sizes are reached, the data will be despooled and written to tape. Spooling
data prevents tape shoe-shine (start and stop) during Incremental saves. If you are writing to a disk
file using this option will probably just slow down the backup jobs.

NOTE: When this directive is set to yes, Spool Attributes is also automatically set to yes.

Spool Attributes = <yes|no> The default is set to no, which means that the File attributes are sent
by the Storage daemon to the Director as they are stored on tape. However, if you want to avoid the
possibility that database updates will slow down writing to the tape, you may want to set the value
to yes, in which case the Storage daemon will buffer the File attributes and Storage coordinates to a
temporary file in the Working Directory, then when writing the Job data to the tape is completed, the
attributes and storage coordinates will be sent to the Director.

NOTE: When Spool Data is set to yes, Spool Attributes is also automatically set to yes.

Where = <directory> This directive applies only to a Restore job and specifies a prefix to the directory
name of all files being restored. This permits files to be restored in a different location from which they
were saved. If Where is not specified or is set to backslash (/), the files will be restored to their original
location. By default, we have set Where in the example configuration files to be /tmp/bacula-
restores. This is to prevent accidental overwriting of your files.

Add Prefix = <directory> This directive applies only to a Restore job and specifies a prefix to the
directory name of all files being restored. This will use File Relocation feature implemented in Bacula
2.1.8 or later.

Add Suffix = <extention> This directive applies only to a Restore job and specifies a suffix to all files
being restored. This will use File Relocation feature implemented in Bacula 2.1.8 or later.

Using Add Suffix=.old, /etc/passwd will be restored to /etc/passwsd.old

Strip Prefix = <directory> This directive applies only to a Restore job and specifies a prefix to remove
from the directory name of all files being restored. This will use the File Relocation feature implemented
in Bacula 2.1.8 or later.

Using Strip Prefix=/etc, /etc/passwd will be restored to /passwd

Under Windows, if you want to restore c:/files to d:/files, you can use :

Strip Prefix = c:

Add Prefix = d:

134 Bacula Version 5.0.3

RegexWhere = <expressions> This directive applies only to a Restore job and specifies a regex filename
manipulation of all files being restored. This will use File Relocation feature implemented in Bacula
2.1.8 or later.

For more informations about how use this option, see this.

Replace = <replace-option> This directive applies only to a Restore job and specifies what happens
when Bacula wants to restore a file or directory that already exists. You have the following options for
replace-option:

always when the file to be restored already exists, it is deleted and then replaced by the copy that
was backed up. This is the default value.

ifnewer if the backed up file (on tape) is newer than the existing file, the existing file is deleted and
replaced by the back up.

ifolder if the backed up file (on tape) is older than the existing file, the existing file is deleted and
replaced by the back up.

never if the backed up file already exists, Bacula skips restoring this file.

Prefix Links=<yes|no> If a Where path prefix is specified for a recovery job, apply it to absolute links
as well. The default is No. When set to Yes then while restoring files to an alternate directory, any
absolute soft links will also be modified to point to the new alternate directory. Normally this is what
is desired – i.e. everything is self consistent. However, if you wish to later move the files to their
original locations, all files linked with absolute names will be broken.

Maximum Concurrent Jobs = <number> where <number> is the maximum number of Jobs from
the current Job resource that can run concurrently. Note, this directive limits only Jobs with the same
name as the resource in which it appears. Any other restrictions on the maximum concurrent jobs
such as in the Director, Client, or Storage resources will also apply in addition to the limit specified
here. The default is set to 1, but you may set it to a larger number. We strongly recommend that you
read the WARNING documented under Maximum Concurrent Jobs in the Director’s resource.

Reschedule On Error = <yes|no> If this directive is enabled, and the job terminates in error, the job
will be rescheduled as determined by the Reschedule Interval and Reschedule Times directives.
If you cancel the job, it will not be rescheduled. The default is no (i.e. the job will not be rescheduled).

This specification can be useful for portables, laptops, or other machines that are not always connected
to the network or switched on.

Reschedule Interval = <time-specification> If you have specified Reschedule On Error = yes
and the job terminates in error, it will be rescheduled after the interval of time specified by time-
specification. See the time specification formats in the Configure chapter for details of time specifi-
cations. If no interval is specified, the job will not be rescheduled on error.

Reschedule Times = <count> This directive specifies the maximum number of times to reschedule the
job. If it is set to zero (the default) the job will be rescheduled an indefinite number of times.

Allow Duplicate Jobs = <yes|no> A duplicate job in the sense we use it here means a second or sub-
sequent job with the same name starts. This happens most frequently when the first job runs longer
than expected because no tapes are available.

If this directive is enabled duplicate jobs will be run. If the directive is set to no (default) then only
one job of a given name may run at one time, and the action that Bacula takes to ensure only one job
runs is determined by the other directives (see below).

If Allow Duplicate Jobs is set to no and two jobs are present and none of the three directives given
below permit cancelling a job, then the current job (the second one started) will be cancelled.

Allow Higher Duplicates = <yes|no> This directive was implemented in version 5.0.0, but does not
work as expected. If used, it should always be set to no. In later versions of Bacula the directive is
disabled (disregarded).

Cancel Lower Level Duplicates = <yes|no> If Allow Duplicates Jobs is set to no and this directive
is set to yes, Bacula will choose between duplicated jobs the one with the highest level. For example,
it will cancel a previous Incremental to run a Full backup. It works only for Backup jobs. The default
is no. If the levels of the duplicated jobs are the same, nothing is done and the other Cancel XXX
Duplicate directives will be examined.

Bacula Version 5.0.3 135

JobA 1st

JobA 2nd

A duplicate job in the sense we use it here means a second

or subsequent job with the same name starts.

Allow Duplicate Jobs Yes

no

Run

Cancel Level

Lower Duplicates

Yes

no

Cancel Running

Duplicates

yes

No

Cancel 1st
Run 2nd

Cancel Queued

Duplicates

yes

No

Cancel 2nd

is 1st queued

(not yet running)

no

level(2nd) > level(1st)

ex: Full > Incremental

Cancel 2nd

yes

no

yes

level(1st) > level(2nd)

ex: Full > Incremental

Cancel 1st

Run 2nd

yes

no

Figure 17.2: Allow Duplicate Jobs usage

136 Bacula Version 5.0.3

Cancel Queued Duplicates = <yes|no> If Allow Duplicate Jobs is set to no and if this directive is
set to yes any job that is already queued to run but not yet running will be canceled. The default is
no.

Cancel Running Duplicates = <yes|no> If Allow Duplicate Jobs is set to no and if this directive
is set to yes any job that is already running will be canceled. The default is no.

DuplicateJobProximity = <time-specification> This directive permits to determine if two jobs are
really duplicated. If the first one is running for long time, this is probably not a good idea to cancel it.

Run = <job-name> The Run directive (not to be confused with the Run option in a Schedule) allows
you to start other jobs or to clone jobs. By using the cloning keywords (see below), you can backup
the same data (or almost the same data) to two or more drives at the same time. The job-name is
normally the same name as the current Job resource (thus creating a clone). However, it may be any
Job name, so one job may start other related jobs.

The part after the equal sign must be enclosed in double quotes, and can contain any string or set
of options (overrides) that you can specify when entering the Run command from the console. For
example storage=DDS-4 In addition, there are two special keywords that permit you to clone
the current job. They are level=%l and since=%s. The %l in the level keyword permits entering
the actual level of the current job and the %s in the since keyword permits putting the same time for
comparison as used on the current job. Note, in the case of the since keyword, the %s must be enclosed
in double quotes, and thus they must be preceded by a backslash since they are already inside quotes.
For example:

run = "Nightly-backup level=%l since=\"%s\" storage=DDS-4"

A cloned job will not start additional clones, so it is not possible to recurse.

Please note that all cloned jobs, as specified in the Run directives are submitted for running before
the original job is run (while it is being initialized). This means that any clone job will actually start
before the original job, and may even block the original job from starting until the original job finishes
unless you allow multiple simultaneous jobs. Even if you set a lower priority on the clone job, if no
other jobs are running, it will start before the original job.

If you are trying to prioritize jobs by using the clone feature (Run directive), you will find it much
easier to do using a RunScript resource, or a RunBeforeJob directive.

Priority = <number> This directive permits you to control the order in which your jobs will be run by
specifying a positive non-zero number. The higher the number, the lower the job priority. Assuming
you are not running concurrent jobs, all queued jobs of priority 1 will run before queued jobs of priority
2 and so on, regardless of the original scheduling order.

The priority only affects waiting jobs that are queued to run, not jobs that are already running. If one
or more jobs of priority 2 are already running, and a new job is scheduled with priority 1, the currently
running priority 2 jobs must complete before the priority 1 job is run, unless Allow Mixed Priority is
set.

The default priority is 10.

If you want to run concurrent jobs you should keep these points in mind:

• See Running Concurrent Jobs on how to setup concurrent jobs.

• Bacula concurrently runs jobs of only one priority at a time. It will not simultaneously run a
priority 1 and a priority 2 job.

• If Bacula is running a priority 2 job and a new priority 1 job is scheduled, it will wait until the
running priority 2 job terminates even if the Maximum Concurrent Jobs settings would otherwise
allow two jobs to run simultaneously.

• Suppose that bacula is running a priority 2 job and a new priority 1 job is scheduled and queued
waiting for the running priority 2 job to terminate. If you then start a second priority 2 job,
the waiting priority 1 job will prevent the new priority 2 job from running concurrently with the
running priority 2 job. That is: as long as there is a higher priority job waiting to run, no new
lower priority jobs will start even if the Maximum Concurrent Jobs settings would normally allow
them to run. This ensures that higher priority jobs will be run as soon as possible.

Bacula Version 5.0.3 137

If you have several jobs of different priority, it may not best to start them at exactly the same time,
because Bacula must examine them one at a time. If by Bacula starts a lower priority job first, then
it will run before your high priority jobs. If you experience this problem, you may avoid it by starting
any higher priority jobs a few seconds before lower priority ones. This insures that Bacula will examine
the jobs in the correct order, and that your priority scheme will be respected.

Allow Mixed Priority = <yes|no> This directive is only implemented in version 2.5 and later. When
set to yes (default no), this job may run even if lower priority jobs are already running. This means a
high priority job will not have to wait for other jobs to finish before starting. The scheduler will only
mix priorities when all running jobs have this set to true.

Note that only higher priority jobs will start early. Suppose the director will allow two concurrent jobs,
and that two jobs with priority 10 are running, with two more in the queue. If a job with priority 5 is
added to the queue, it will be run as soon as one of the running jobs finishes. However, new priority
10 jobs will not be run until the priority 5 job has finished.

Write Part After Job = <yes|no> This directive is only implemented in version 1.37 and later. If this
directive is set to yes (default no), a new part file will be created after the job is finished.

It should be set to yes when writing to devices that require mount (for example DVD), so you are
sure that the current part, containing this job’s data, is written to the device, and that no data is left
in the temporary file on the hard disk. However, on some media, like DVD+R and DVD-R, a lot of
space (about 10Mb) is lost every time a part is written. So, if you run several jobs each after another,
you could set this directive to no for all jobs, except the last one, to avoid wasting too much space,
but to ensure that the data is written to the medium when all jobs are finished.

This directive is ignored with tape and FIFO devices.

The following is an example of a valid Job resource definition:

Job {

Name = "Minou"

Type = Backup

Level = Incremental # default

Client = Minou

FileSet="Minou Full Set"

Storage = DLTDrive

Pool = Default

Schedule = "MinouWeeklyCycle"

Messages = Standard

}

17.4 The JobDefs Resource

The JobDefs resource permits all the same directives that can appear in a Job resource. However, a JobDefs
resource does not create a Job, rather it can be referenced within a Job to provide defaults for that Job.
This permits you to concisely define several nearly identical Jobs, each one referencing a JobDefs resource
which contains the defaults. Only the changes from the defaults need to be mentioned in each Job.

17.5 The Schedule Resource

The Schedule resource provides a means of automatically scheduling a Job as well as the ability to override
the default Level, Pool, Storage and Messages resources. If a Schedule resource is not referenced in a Job,
the Job can only be run manually. In general, you specify an action to be taken and when.

Schedule Start of the Schedule directives. No Schedule resource is required, but you will need at least
one if you want Jobs to be automatically started.

Name = <name> The name of the schedule being defined. The Name directive is required.

138 Bacula Version 5.0.3

Run = <Job-overrides> <Date-time-specification> The Run directive defines when a Job is to be
run, and what overrides if any to apply. You may specify multiple run directives within a Schedule
resource. If you do, they will all be applied (i.e. multiple schedules). If you have two Run directives
that start at the same time, two Jobs will start at the same time (well, within one second of each
other).

The Job-overrides permit overriding the Level, the Storage, the Messages, and the Pool specifications
provided in the Job resource. In addition, the FullPool, the IncrementalPool, and the DifferentialPool
specifications permit overriding the Pool specification according to what backup Job Level is in effect.

By the use of overrides, you may customize a particular Job. For example, you may specify a Messages
override for your Incremental backups that outputs messages to a log file, but for your weekly or
monthly Full backups, you may send the output by email by using a different Messages override.

Job-overrides are specified as: keyword=value where the keyword is Level, Storage, Messages,
Pool, FullPool, DifferentialPool, or IncrementalPool, and the value is as defined on the respective
directive formats for the Job resource. You may specify multiple Job-overrides on one Run directive
by separating them with one or more spaces or by separating them with a trailing comma. For example:

Level=Full is all files in the FileSet whether or not they have changed.

Level=Incremental is all files that have changed since the last backup.

Pool=Weekly specifies to use the Pool named Weekly.

Storage=DLT Drive specifies to use DLT Drive for the storage device.

Messages=Verbose specifies to use the Verbose message resource for the Job.

FullPool=Full specifies to use the Pool named Full if the job is a full backup, or is upgraded from
another type to a full backup.

DifferentialPool=Differential specifies to use the Pool named Differential if the job is a differen-
tial backup.

IncrementalPool=Incremental specifies to use the Pool named Incremental if the job is an in-
cremental backup.

SpoolData=yes|no tells Bacula to request the Storage daemon to spool data to a disk file before
writing it to the Volume (normally a tape). Thus the data is written in large blocks to the Volume
rather than small blocks. This directive is particularly useful when running multiple simultaneous
backups to tape. It prevents interleaving of the job data and reduces or eliminates tape drive stop
and start commonly known as ”shoe-shine”.

SpoolSize=bytes where the bytes specify the maximum spool size for this job. The default is take
from Device Maximum Spool Size limit. This directive is available only in Bacula version 2.3.5
or later.

WritePartAfterJob=yes|no tells Bacula to request the Storage daemon to write the current part
file to the device when the job is finished (see Write Part After Job directive in the Job resource).
Please note, this directive is implemented only in version 1.37 and later. The default is yes. We
strongly recommend that you keep this set to yes otherwise, when the last job has finished one
part will remain in the spool file and restore may or may not work.

Date-time-specification determines when the Job is to be run. The specification is a repetition,
and as a default Bacula is set to run a job at the beginning of the hour of every hour of every day of
every week of every month of every year. This is not normally what you want, so you must specify or
limit when you want the job to run. Any specification given is assumed to be repetitive in nature and
will serve to override or limit the default repetition. This is done by specifying masks or times for the
hour, day of the month, day of the week, week of the month, week of the year, and month when you
want the job to run. By specifying one or more of the above, you can define a schedule to repeat at
almost any frequency you want.

Basically, you must supply a month, day, hour, and minute the Job is to be run. Of these four
items to be specified, day is special in that you may either specify a day of the month such as 1, 2, ...
31, or you may specify a day of the week such as Monday, Tuesday, ... Sunday. Finally, you may also
specify a week qualifier to restrict the schedule to the first, second, third, fourth, or fifth week of the
month.

For example, if you specify only a day of the week, such as Tuesday the Job will be run every hour
of every Tuesday of every Month. That is the month and hour remain set to the defaults of every
month and all hours.

Bacula Version 5.0.3 139

Note, by default with no other specification, your job will run at the beginning of every hour. If
you wish your job to run more than once in any given hour, you will need to specify multiple run
specifications each with a different minute.

The date/time to run the Job can be specified in the following way in pseudo-BNF:

<void-keyword> = on

<at-keyword> = at

<week-keyword> = 1st | 2nd | 3rd | 4th | 5th | first |

second | third | fourth | fifth

<wday-keyword> = sun | mon | tue | wed | thu | fri | sat |

sunday | monday | tuesday | wednesday |

thursday | friday | saturday

<week-of-year-keyword> = w00 | w01 | ... w52 | w53

<month-keyword> = jan | feb | mar | apr | may | jun | jul |

aug | sep | oct | nov | dec | january |

february | ... | december

<daily-keyword> = daily

<weekly-keyword> = weekly

<monthly-keyword> = monthly

<hourly-keyword> = hourly

<digit> = 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 0

<number> = <digit> | <digit><number>

<12hour> = 0 | 1 | 2 | ... 12

<hour> = 0 | 1 | 2 | ... 23

<minute> = 0 | 1 | 2 | ... 59

<day> = 1 | 2 | ... 31

<time> = <hour>:<minute> |

<12hour>:<minute>am |

<12hour>:<minute>pm

<time-spec> = <at-keyword> <time> |

<hourly-keyword>

<date-keyword> = <void-keyword> <weekly-keyword>

<day-range> = <day>-<day>

<month-range> = <month-keyword>-<month-keyword>

<wday-range> = <wday-keyword>-<wday-keyword>

<range> = <day-range> | <month-range> |

<wday-range>

<date> = <date-keyword> | <day> | <range>

<date-spec> = <date> | <date-spec>

<day-spec> = <day> | <wday-keyword> |

<day> | <wday-range> |

<week-keyword> <wday-keyword> |

<week-keyword> <wday-range> |

<daily-keyword>

<month-spec> = <month-keyword> | <month-range> |

<monthly-keyword>

<date-time-spec> = <month-spec> <day-spec> <time-spec>

Note, the Week of Year specification wnn follows the ISO standard definition of the week of the year, where
Week 1 is the week in which the first Thursday of the year occurs, or alternatively, the week which contains
the 4th of January. Weeks are numbered w01 to w53. w00 for Bacula is the week that precedes the first ISO
week (i.e. has the first few days of the year if any occur before Thursday). w00 is not defined by the ISO
specification. A week starts with Monday and ends with Sunday.

According to the NIST (US National Institute of Standards and Technology), 12am and 12pm are ambiguous
and can be defined to anything. However, 12:01am is the same as 00:01 and 12:01pm is the same as 12:01, so
Bacula defines 12am as 00:00 (midnight) and 12pm as 12:00 (noon). You can avoid this abiguity (confusion)
by using 24 hour time specifications (i.e. no am/pm). This is the definition in Bacula version 2.0.3 and later.

An example schedule resource that is named WeeklyCycle and runs a job with level full each Sunday at
2:05am and an incremental job Monday through Saturday at 2:05am is:

Schedule {

Name = "WeeklyCycle"

Run = Level=Full sun at 2:05

Run = Level=Incremental mon-sat at 2:05

}

An example of a possible monthly cycle is as follows:

140 Bacula Version 5.0.3

Schedule {

Name = "MonthlyCycle"

Run = Level=Full Pool=Monthly 1st sun at 2:05

Run = Level=Differential 2nd-5th sun at 2:05

Run = Level=Incremental Pool=Daily mon-sat at 2:05

}

The first of every month:

Schedule {

Name = "First"

Run = Level=Full on 1 at 2:05

Run = Level=Incremental on 2-31 at 2:05

}

Every 10 minutes:

Schedule {

Name = "TenMinutes"

Run = Level=Full hourly at 0:05

Run = Level=Full hourly at 0:15

Run = Level=Full hourly at 0:25

Run = Level=Full hourly at 0:35

Run = Level=Full hourly at 0:45

Run = Level=Full hourly at 0:55

}

17.6 Technical Notes on Schedules

Internally Bacula keeps a schedule as a bit mask. There are six masks and a minute field to each schedule.
The masks are hour, day of the month (mday), month, day of the week (wday), week of the month (wom),
and week of the year (woy). The schedule is initialized to have the bits of each of these masks set, which
means that at the beginning of every hour, the job will run. When you specify a month for the first time,
the mask will be cleared and the bit corresponding to your selected month will be selected. If you specify
a second month, the bit corresponding to it will also be added to the mask. Thus when Bacula checks the
masks to see if the bits are set corresponding to the current time, your job will run only in the two months
you have set. Likewise, if you set a time (hour), the hour mask will be cleared, and the hour you specify will
be set in the bit mask and the minutes will be stored in the minute field.

For any schedule you have defined, you can see how these bits are set by doing a show schedules command
in the Console program. Please note that the bit mask is zero based, and Sunday is the first day of the week
(bit zero).

-

17.7 The FileSet Resource

The FileSet resource defines what files are to be included or excluded in a backup job. A FileSet resource
is required for each backup Job. It consists of a list of files or directories to be included, a list of files or
directories to be excluded and the various backup options such as compression, encryption, and signatures
that are to be applied to each file.

Any change to the list of the included files will cause Bacula to automatically create a new FileSet (defined
by the name and an MD5 checksum of the Include/Exclude contents). Each time a new FileSet is created,
Bacula will ensure that the next backup is always a Full save.

Bacula is designed to handle most character sets of the world, US ASCII, German, French, Chinese, ...
However, it does this by encoding everything in UTF-8, and it expects all configuration files (including those

Bacula Version 5.0.3 141

read on Win32 machines) to be in UTF-8 format. UTF-8 is typically the default on Linux machines, but not
on all Unix machines, nor on Windows, so you must take some care to ensure that your locale is set properly
before starting Bacula. On most modern Win32 machines, you can edit the conf files with notebook and
choose output encoding UTF-8.

To ensure that Bacula configuration files can be correctly read including foreign characters the bf LANG
environment variable must end in .UTF-8. An full example is en US.UTF-8. The exact syntax may vary
a bit from OS to OS, and exactly how you define it will also vary.

Bacula assumes that all filenames are in UTF-8 format on Linux and Unix machines. On Win32 they are in
Unicode (UTF-16), and will be automatically converted to UTF-8 format.

FileSet Start of the FileSet resource. One FileSet resource must be defined for each Backup job.

Name = <name> The name of the FileSet resource. This directive is required.

Ignore FileSet Changes = <yes|no> Normally, if you modify the FileSet Include or Exclude lists, the
next backup will be forced to a Full so that Bacula can guarantee that any additions or deletions are
properly saved.

We strongly recommend against setting this directive to yes, since doing so may cause you to have an
incomplete set of backups.

If this directive is set to yes, any changes you make to the FileSet Include or Exclude lists, will not
force a Full during subsequent backups.

The default is no, in which case, if you change the Include or Exclude, Bacula will force a Full backup
to ensure that everything is properly backed up.

Enable VSS = <yes|no> If this directive is set to yes the File daemon will be notified that the user wants
to use a Volume Shadow Copy Service (VSS) backup for this job. The default is yes. This directive
is effective only for VSS enabled Win32 File daemons. It permits a consistent copy of open files to
be made for cooperating writer applications, and for applications that are not VSS away, Bacula can
at least copy open files. The Volume Shadow Copy will only be done on Windows drives where the
drive (e.g. C:, D:, ...) is explicitly mentioned in a File directive. For more information, please see the
Windows chapter of this manual.

Include { Options {<file-options>} ...; <file-list> }

Options { <file-options> }

Exclude { <file-list> }

The Include resource must contain a list of directories and/or files to be processed in the backup job.
Normally, all files found in all subdirectories of any directory in the Include File list will be backed up.
Note, see below for the definition of <file-list>. The Include resource may also contain one or more Options
resources that specify options such as compression to be applied to all or any subset of the files found when
processing the file-list for backup. Please see below for more details concerning Options resources.

There can be any number of Include resources within the FileSet, each having its own list of directories
or files to be backed up and the backup options defined by one or more Options resources. The file-list
consists of one file or directory name per line. Directory names should be specified without a trailing slash
with Unix path notation.

Windows users, please take note to specify directories (even c:/...) in Unix path notation. If you use
Windows conventions, you will most likely not be able to restore your files due to the fact that the Windows
path separator was defined as an escape character long before Windows existed, and Bacula adheres to that
convention (i.e.
means the next character appears as itself).

You should always specify a full path for every directory and file that you list in the FileSet. In addition,
on Windows machines, you should always prefix the directory or filename with the drive specification (e.g.
c:/xxx) using Unix directory name separators (forward slash). The drive letter itself can be upper or lower
case (e.g. c:/xxx or C:/xxx).

142 Bacula Version 5.0.3

Bacula’s default for processing directories is to recursively descend in the directory saving all files and
subdirectories. Bacula will not by default cross filesystems (or mount points in Unix parlance). This means
that if you specify the root partition (e.g. /), Bacula will save only the root partition and not any of the
other mounted filesystems. Similarly on Windows systems, you must explicitly specify each of the drives you
want saved (e.g. c:/ and d:/ ...). In addition, at least for Windows systems, you will most likely want to
enclose each specification within double quotes particularly if the directory (or file) name contains spaces.
The df command on Unix systems will show you which mount points you must specify to save everything.
See below for an example.

Take special care not to include a directory twice or Bacula will backup the same files two times wasting a
lot of space on your archive device. Including a directory twice is very easy to do. For example:

Include {

File = /

File = /usr

Options { compression=GZIP }

}

on a Unix system where /usr is a subdirectory (rather than a mounted filesystem) will cause /usr to be
backed up twice.

Please take note of the following items in the FileSet syntax:

1. There is no equal sign (=) after the Include and before the opening brace ({). The same is true for
the Exclude.

2. Each directory (or filename) to be included or excluded is preceded by a File =. Previously they were
simply listed on separate lines.

3. The options that previously appeared on the Include line now must be specified within their own
Options resource.

4. The Exclude resource does not accept Options.

5. When using wild-cards or regular expressions, directory names are always terminated with a slash (/)
and filenames have no trailing slash.

The Options resource is optional, but when specified, it will contain a list of keyword=value options to be
applied to the file-list. See below for the definition of file-list. Multiple Options resources may be specified
one after another. As the files are found in the specified directories, the Options will applied to the filenames
to determine if and how the file should be backed up. The wildcard and regular expression pattern matching
parts of the Options resources are checked in the order they are specified in the FileSet until the first one
that matches. Once one matches, the compression and other flags within the Options specification will apply
to the pattern matched.

A key point is that in the absence of an Option or no other Option is matched, every file is accepted for
backing up. This means that if you want to exclude something, you must explicitly specify an Option with
an exclude = yes and some pattern matching.

Once Bacula determines that the Options resource matches the file under consideration, that file will be
saved without looking at any other Options resources that may be present. This means that any wild cards
must appear before an Options resource without wild cards.

If for some reason, Bacula checks all the Options resources to a file under consideration for backup, but there
are no matches (generally because of wild cards that don’t match), Bacula as a default will then backup the
file. This is quite logical if you consider the case of no Options clause is specified, where you want everything
to be backed up, and it is important to keep in mind when excluding as mentioned above.

However, one additional point is that in the case that no match was found, Bacula will use the options found
in the last Options resource. As a consequence, if you want a particular set of ”default” options, you should
put them in an Options resource after any other Options.

Bacula Version 5.0.3 143

It is a good idea to put all your wild-card and regex expressions inside double quotes to prevent conf file
scanning problems.

This is perhaps a bit overwhelming, so there are a number of examples included below to illustrate how this
works.

You find yourself using a lot of Regex statements, which will cost quite a lot of CPU time, we recommend
you simplify them if you can, or better yet convert them to Wild statements which are much more efficient.

The directives within an Options resource may be one of the following:

compression=GZIP All files saved will be software compressed using the GNU ZIP compression format.
The compression is done on a file by file basis by the File daemon. If there is a problem reading
the tape in a single record of a file, it will at most affect that file and none of the other files on the
tape. Normally this option is not needed if you have a modern tape drive as the drive will do its
own compression. In fact, if you specify software compression at the same time you have hardware
compression turned on, your files may actually take more space on the volume.

Software compression is very important if you are writing your Volumes to a file, and it can also be
helpful if you have a fast computer but a slow network, otherwise it is generally better to rely your
tape drive’s hardware compression. As noted above, it is not generally a good idea to do both software
and hardware compression.

Specifying GZIP uses the default compression level 6 (i.e. GZIP is identical to GZIP6). If you want
a different compression level (1 through 9), you can specify it by appending the level number with
no intervening spaces to GZIP. Thus compression=GZIP1 would give minimum compression but
the fastest algorithm, and compression=GZIP9 would give the highest level of compression, but
requires more computation. According to the GZIP documentation, compression levels greater than
six generally give very little extra compression and are rather CPU intensive.

You can overwrite this option per Storage resource with AllowCompression option.

signature=SHA1 An SHA1 signature will be computed for all The SHA1 algorithm is purported to be some
what slower than the MD5 algorithm, but at the same time is significantly better from a cryptographic
point of view (i.e. much fewer collisions, much lower probability of being hacked.) It adds four more
bytes than the MD5 signature. We strongly recommend that either this option or MD5 be specified as
a default for all files. Note, only one of the two options MD5 or SHA1 can be computed for any file.

signature=MD5 An MD5 signature will be computed for all files saved. Adding this option generates
about 5% extra overhead for each file saved. In addition to the additional CPU time, the MD5
signature adds 16 more bytes per file to your catalog. We strongly recommend that this option or the
SHA1 option be specified as a default for all files.

basejob=<options> The options letters specified are used when running a Backup Level=Full with
BaseJobs. The options letters are the same than in the verify= option below.

accurate=<options> The options letters specified are used when running a Backup
Level=Incremental/Differential in Accurate mode. The options letters are the same than
in the verify= option below.

verify=<options> The options letters specified are used when running a Verify Level=Catalog as well
as the DiskToCatalog level job. The options letters may be any combination of the following:

i compare the inodes

p compare the permission bits

n compare the number of links

u compare the user id

g compare the group id

s compare the size

a compare the access time

m compare the modification time (st mtime)

c compare the change time (st ctime)

144 Bacula Version 5.0.3

d report file size decreases

5 compare the MD5 signature

1 compare the SHA1 signature

A useful set of general options on the Level=Catalog or Level=DiskToCatalog verify is pins5 i.e.
compare permission bits, inodes, number of links, size, and MD5 changes.

onefs=yes|no If set to yes (the default), Bacula will remain on a single file system. That is it will not
backup file systems that are mounted on a subdirectory. If you are using a *nix system, you may not
even be aware that there are several different filesystems as they are often automatically mounted by
the OS (e.g. /dev, /net, /sys, /proc, ...). With Bacula 1.38.0 or later, it will inform you when it decides
not to traverse into another filesystem. This can be very useful if you forgot to backup a particular
partition. An example of the informational message in the job report is:

rufus-fd: /misc is a different filesystem. Will not descend from / into /misc

rufus-fd: /net is a different filesystem. Will not descend from / into /net

rufus-fd: /var/lib/nfs/rpc_pipefs is a different filesystem. Will not descend from /var/lib/nfs into /var/lib/nfs/rpc_pipefs

rufus-fd: /selinux is a different filesystem. Will not descend from / into /selinux

rufus-fd: /sys is a different filesystem. Will not descend from / into /sys

rufus-fd: /dev is a different filesystem. Will not descend from / into /dev

rufus-fd: /home is a different filesystem. Will not descend from / into /home

Note: in previous versions of Bacula, the above message was of the form:

Filesystem change prohibited. Will not descend into /misc

If you wish to backup multiple filesystems, you can explicitly list each filesystem you want saved.
Otherwise, if you set the onefs option to no, Bacula will backup all mounted file systems (i.e. traverse
mount points) that are found within the FileSet. Thus if you have NFS or Samba file systems
mounted on a directory listed in your FileSet, they will also be backed up. Normally, it is preferable
to set onefs=yes and to explicitly name each filesystem you want backed up. Explicitly naming the
filesystems you want backed up avoids the possibility of getting into a infinite loop recursing filesystems.
Another possibility is to use onefs=no and to set fstype=ext2, See the example below for more
details.

If you think that Bacula should be backing up a particular directory and it is not, and you have
onefs=no set, before you complain, please do:

stat /

stat <filesystem>

where you replace filesystem with the one in question. If the Device: number is different for / and
for your filesystem, then they are on different filesystems. E.g.

stat /

File: ‘/’

Size: 4096 Blocks: 16 IO Block: 4096 directory

Device: 302h/770d Inode: 2 Links: 26

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)

Access: 2005-11-10 12:28:01.000000000 +0100

Modify: 2005-09-27 17:52:32.000000000 +0200

Change: 2005-09-27 17:52:32.000000000 +0200

stat /net

File: ‘/home’

Size: 4096 Blocks: 16 IO Block: 4096 directory

Device: 308h/776d Inode: 2 Links: 7

Access: (0755/drwxr-xr-x) Uid: (0/ root) Gid: (0/ root)

Access: 2005-11-10 12:28:02.000000000 +0100

Modify: 2005-11-06 12:36:48.000000000 +0100

Change: 2005-11-06 12:36:48.000000000 +0100

Also be aware that even if you include /home in your list of files to backup, as you most likely should,
you will get the informational message that ”/home is a different filesystem” when Bacula is processing
the / directory. This message does not indicate an error. This message means that while examining
the File = referred to in the second part of the message, Bacula will not descend into the directory
mentioned in the first part of the message. However, it is possible that the separate filesystem will be
backed up despite the message. For example, consider the following FileSet:

Bacula Version 5.0.3 145

File = /

File = /var

where /var is a separate filesystem. In this example, you will get a message saying that Bacula will
not decend from / into /var. But it is important to realise that Bacula will descend into /var from
the second File directive shown above. In effect, the warning is bogus, but it is supplied to alert you
to possible omissions from your FileSet. In this example, /var will be backed up. If you changed the
FileSet such that it did not specify /var, then /var will not be backed up.

honor nodump flag=<yes|no> If your file system supports the nodump flag (e. g. most BSD-derived
systems) Bacula will honor the setting of the flag when this option is set to yes. Files having this flag
set will not be included in the backup and will not show up in the catalog. For directories with the
nodump flag set recursion is turned off and the directory will be listed in the catalog. If the honor
nodump flag option is not defined or set to no every file and directory will be eligible for backup.

portable=yes|no If set to yes (default is no), the Bacula File daemon will backup Win32 files in a portable
format, but not all Win32 file attributes will be saved and restored. By default, this option is set to
no, which means that on Win32 systems, the data will be backed up using Windows API calls and on
WinNT/2K/XP, all the security and ownership attributes will be properly backed up (and restored).
However this format is not portable to other systems – e.g. Unix, Win95/98/Me. When backing up
Unix systems, this option is ignored, and unless you have a specific need to have portable backups, we
recommend accept the default (no) so that the maximum information concerning your files is saved.

recurse=yes|no If set to yes (the default), Bacula will recurse (or descend) into all subdirectories found
unless the directory is explicitly excluded using an exclude definition. If you set recurse=no, Bacula
will save the subdirectory entries, but not descend into the subdirectories, and thus will not save the
files or directories contained in the subdirectories. Normally, you will want the default (yes).

sparse=yes|no Enable special code that checks for sparse files such as created by ndbm. The default is
no, so no checks are made for sparse files. You may specify sparse=yes even on files that are not
sparse file. No harm will be done, but there will be a small additional overhead to check for buffers of
all zero, and a small additional amount of space on the output archive will be used to save the seek
address of each non-zero record read.

Restrictions: Bacula reads files in 32K buffers. If the whole buffer is zero, it will be treated as a
sparse block and not written to tape. However, if any part of the buffer is non-zero, the whole buffer
will be written to tape, possibly including some disk sectors (generally 4098 bytes) that are all zero. As
a consequence, Bacula’s detection of sparse blocks is in 32K increments rather than the system block
size. If anyone considers this to be a real problem, please send in a request for change with the reason.

If you are not familiar with sparse files, an example is say a file where you wrote 512 bytes at address
zero, then 512 bytes at address 1 million. The operating system will allocate only two blocks, and the
empty space or hole will have nothing allocated. However, when you read the sparse file and read the
addresses where nothing was written, the OS will return all zeros as if the space were allocated, and
if you backup such a file, a lot of space will be used to write zeros to the volume. Worse yet, when
you restore the file, all the previously empty space will now be allocated using much more disk space.
By turning on the sparse option, Bacula will specifically look for empty space in the file, and any
empty space will not be written to the Volume, nor will it be restored. The price to pay for this is that
Bacula must search each block it reads before writing it. On a slow system, this may be important.
If you suspect you have sparse files, you should benchmark the difference or set sparse for only those
files that are really sparse.

readfifo=yes|no If enabled, tells the Client to read the data on a backup and write the data on a restore
to any FIFO (pipe) that is explicitly mentioned in the FileSet. In this case, you must have a program
already running that writes into the FIFO for a backup or reads from the FIFO on a restore. This
can be accomplished with the RunBeforeJob directive. If this is not the case, Bacula will hang
indefinitely on reading/writing the FIFO. When this is not enabled (default), the Client simply saves
the directory entry for the FIFO.

Unfortunately, when Bacula runs a RunBeforeJob, it waits until that script terminates, and if the script
accesses the FIFO to write into the it, the Bacula job will block and everything will stall. However,
Vladimir Stavrinov as supplied tip that allows this feature to work correctly. He simply adds the
following to the beginning of the RunBeforeJob script:

146 Bacula Version 5.0.3

exec > /dev/null

noatime=yes|no If enabled, and if your Operating System supports the O NOATIME file open flag, Bacula
will open all files to be backed up with this option. It makes it possible to read a file without updating
the inode atime (and also without the inode ctime update which happens if you try to set the atime
back to its previous value). It also prevents a race condition when two programs are reading the same
file, but only one does not want to change the atime. It’s most useful for backup programs and file
integrity checkers (and bacula can fit on both categories).

This option is particularly useful for sites where users are sensitive to their MailBox file access time.
It replaces both the keepatime option without the inconveniences of that option (see below).

If your Operating System does not support this option, it will be silently ignored by Bacula.

mtimeonly=yes|no If enabled, tells the Client that the selection of files during Incremental and Differential
backups should based only on the st mtime value in the stat() packet. The default is no which means
that the selection of files to be backed up will be based on both the st mtime and the st ctime values.
In general, it is not recommended to use this option.

keepatime=yes|no The default is no. When enabled, Bacula will reset the st atime (access time) field of
files that it backs up to their value prior to the backup. This option is not generally recommended as
there are very few programs that use st atime, and the backup overhead is increased because of the
additional system call necessary to reset the times. However, for some files, such as mailboxes, when
Bacula backs up the file, the user will notice that someone (Bacula) has accessed the file. In this, case
keepatime can be useful. (I’m not sure this works on Win32).

Note, if you use this feature, when Bacula resets the access time, the change time (st ctime) will
automatically be modified by the system, so on the next incremental job, the file will be backed up
even if it has not changed. As a consequence, you will probably also want to use mtimeonly = yes
as well as keepatime (thanks to Rudolf Cejka for this tip).

checkfilechanges=yes|no On versions 2.0.4 or greater, if enabled, the Client will check size, age of each
file after their backup to see if they have changed during backup. If time or size mismatch, an error
will raise.

zog-fd: Client1.2007-03-31_09.46.21 Error: /tmp/test mtime changed during backup.

In general, it is recommended to use this option.

hardlinks=yes|no When enabled (default), this directive will cause hard links to be backed up. However,
the File daemon keeps track of hard linked files and will backup the data only once. The process of
keeping track of the hard links can be quite expensive if you have lots of them (tens of thousands or
more). This doesn’t occur on normal Unix systems, but if you use a program like BackupPC, it can
create hundreds of thousands, or even millions of hard links. Backups become very long and the File
daemon will consume a lot of CPU power checking hard links. In such a case, set hardlinks=no and
hard links will not be backed up. Note, using this option will most likely backup more data and on a
restore the file system will not be restored identically to the original.

wild=<string> Specifies a wild-card string to be applied to the filenames and directory names. Note, if
Exclude is not enabled, the wild-card will select which files are to be included. If Exclude=yes is
specified, the wild-card will select which files are to be excluded. Multiple wild-card directives may
be specified, and they will be applied in turn until the first one that matches. Note, if you exclude a
directory, no files or directories below it will be matched.

You may want to test your expressions prior to running your backup by using the bwild program.
Please see the Utilities chapter of this manual for more. You can also test your full FileSet definition
by using the estimate command in the Console chapter of this manual. It is recommended to enclose
the string in double quotes.

wilddir=<string> Specifies a wild-card string to be applied to directory names only. No filenames will be
matched by this directive. Note, if Exclude is not enabled, the wild-card will select directories to be
included. If Exclude=yes is specified, the wild-card will select which directories are to be excluded.
Multiple wild-card directives may be specified, and they will be applied in turn until the first one that
matches. Note, if you exclude a directory, no files or directories below it will be matched.

Bacula Version 5.0.3 147

It is recommended to enclose the string in double quotes.

You may want to test your expressions prior to running your backup by using the bwild program.
Please see the Utilities chapter of this manual for more. You can also test your full FileSet definition
by using the estimate command in the Console chapter of this manual. An example of excluding with
the WildDir option on Win32 machines is presented below.

wildfile=<string> Specifies a wild-card string to be applied to non-directories. That is no directory entries
will be matched by this directive. However, note that the match is done against the full path and
filename, so your wild-card string must take into account that filenames are preceded by the full path.
If Exclude is not enabled, the wild-card will select which files are to be included. If Exclude=yes is
specified, the wild-card will select which files are to be excluded. Multiple wild-card directives may be
specified, and they will be applied in turn until the first one that matches.

It is recommended to enclose the string in double quotes.

You may want to test your expressions prior to running your backup by using the bwild program.
Please see the Utilities chapter of this manual for more. You can also test your full FileSet definition
by using the estimate command in the Console chapter of this manual. An example of excluding with
the WildFile option on Win32 machines is presented below.

regex=<string> Specifies a POSIX extended regular expression to be applied to the filenames and direc-
tory names, which include the full path. If Exclude is not enabled, the regex will select which files
are to be included. If Exclude=yes is specified, the regex will select which files are to be excluded.
Multiple regex directives may be specified within an Options resource, and they will be applied in turn
until the first one that matches. Note, if you exclude a directory, no files or directories below it will be
matched.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and in addition, regular expressions
are complicated, so you may want to test your expressions prior to running your backup by using the
bregex program. Please see the Utilities chapter of this manual for more. You can also test your full
FileSet definition by using the estimate command in the Console chapter of this manual.

You find yourself using a lot of Regex statements, which will cost quite a lot of CPU time, we recommend
you simplify them if you can, or better yet convert them to Wild statements which are much more
efficient.

regexfile=<string> Specifies a POSIX extended regular expression to be applied to non-directories. No
directories will be matched by this directive. However, note that the match is done against the full
path and filename, so your regex string must take into account that filenames are preceded by the full
path. If Exclude is not enabled, the regex will select which files are to be included. If Exclude=yes
is specified, the regex will select which files are to be excluded. Multiple regex directives may be
specified, and they will be applied in turn until the first one that matches.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and in addition, regular expressions
are complicated, so you may want to test your expressions prior to running your backup by using the
bregex program. Please see the Utilities chapter of this manual for more.

regexdir=<string> Specifies a POSIX extended regular expression to be applied to directory names only.
No filenames will be matched by this directive. Note, if Exclude is not enabled, the regex will select
directories files are to be included. If Exclude=yes is specified, the regex will select which files are to
be excluded. Multiple regex directives may be specified, and they will be applied in turn until the first
one that matches. Note, if you exclude a directory, no files or directories below it will be matched.

It is recommended to enclose the string in double quotes.

The regex libraries differ from one operating system to another, and in addition, regular expressions
are complicated, so you may want to test your expressions prior to running your backup by using the
bregex program. Please see the Utilities chapter of this manual for more.

exclude=yes|no The default is no. When enabled, any files matched within the Options will be excluded
from the backup.

aclsupport=yes|no The default is no. If this option is set to yes, and you have the POSIX libacl installed
on your system, Bacula will backup the file and directory UNIX Access Control Lists (ACL) as defined

148 Bacula Version 5.0.3

in IEEE Std 1003.1e draft 17 and ”POSIX.1e” (abandoned). This feature is available on UNIX only
and depends on the ACL library. Bacula is automatically compiled with ACL support if the libacl
library is installed on your system (shown in config.out). While restoring the files Bacula will try to
restore the ACLs, if there is no ACL support available on the system, Bacula restores the files and
directories but not the ACL information. Please note, if you backup an EXT3 or XFS filesystem with
ACLs, then you restore them to a different filesystem (perhaps reiserfs) that does not have ACLs, the
ACLs will be ignored.

ignore case=yes|no The default is no. On Windows systems, you will almost surely want to set this to
yes. When this directive is set to yes all the case of character will be ignored in wild-card and regex
comparisons. That is an uppercase A will match a lowercase a.

fstype=filesystem-type This option allows you to select files and directories by the filesystem type. The
permitted filesystem-type names are:

ext2, jfs, ntfs, proc, reiserfs, xfs, usbdevfs, sysfs, smbfs, iso9660. For ext3 systems, use ext2.

You may have multiple Fstype directives, and thus permit matching of multiple filesystem types within
a single Options resource. If the type specified on the fstype directive does not match the filesystem
for a particular directive, that directory will not be backed up. This directive can be used to prevent
backing up non-local filesystems. Normally, when you use this directive, you would also set onefs=no
so that Bacula will traverse filesystems.

This option is not implemented in Win32 systems.

DriveType=Windows-drive-type This option is effective only on Windows machines and is somewhat
similar to the Unix/Linux fstype described above, except that it allows you to select what Windows
drive types you want to allow. By default all drive types are accepted.

The permitted drivetype names are:

removable, fixed, remote, cdrom, ramdisk

You may have multiple Driveype directives, and thus permit matching of multiple drive types within a
single Options resource. If the type specified on the drivetype directive does not match the filesystem
for a particular directive, that directory will not be backed up. This directive can be used to prevent
backing up non-local filesystems. Normally, when you use this directive, you would also set onefs=no
so that Bacula will traverse filesystems.

This option is not implemented in Unix/Linux systems.

hfsplussupport=yes|no This option allows you to turn on support for Mac OSX HFS plus finder infor-
mation.

strippath=<integer> This option will cause integer paths to be stripped from the front of the full
path/filename being backed up. This can be useful if you are migrating data from another vendor or
if you have taken a snapshot into some subdirectory. This directive can cause your filenames to be
overlayed with regular backup data, so should be used only by experts and with great care.

<file-list> is a list of directory and/or filename names specified with a File = directive. To include names
containing spaces, enclose the name between double-quotes. Wild-cards are not interpreted in file-lists. They
can only be specified in Options resources.

There are a number of special cases when specifying directories and files in a file-list. They are:

• Any name preceded by an at-sign (@) is assumed to be the name of a file, which contains a list of files
each preceded by a ”File =”. The named file is read once when the configuration file is parsed during
the Director startup. Note, that the file is read on the Director’s machine and not on the Client’s. In
fact, the @filename can appear anywhere within the conf file where a token would be read, and the
contents of the named file will be logically inserted in the place of the @filename. What must be in
the file depends on the location the @filename is specified in the conf file. For example:

Include {

Options { compression=GZIP }

@/home/files/my-files

}

Bacula Version 5.0.3 149

• Any name beginning with a vertical bar (|) is assumed to be the name of a program. This program
will be executed on the Director’s machine at the time the Job starts (not when the Director reads
the configuration file), and any output from that program will be assumed to be a list of files or
directories, one per line, to be included. Before submitting the specified command bacula will performe
character substitution.

This allows you to have a job that, for example, includes all the local partitions even if you change the
partitioning by adding a disk. The examples below show you how to do this. However, please note
two things:
1. if you want the local filesystems, you probably should be using the new fstype directive, which
was added in version 1.36.3 and set onefs=no.

2. the exact syntax of the command needed in the examples below is very system dependent. For
example, on recent Linux systems, you may need to add the -P option, on FreeBSD systems, the
options will be different as well.

In general, you will need to prefix your command or commands with a sh -c so that they are invoked
by a shell. This will not be the case if you are invoking a script as in the second example below. Also,
you must take care to escape (precede with a \) wild-cards, shell character, and to ensure that any
spaces in your command are escaped as well. If you use a single quotes (’) within a double quote (”),
Bacula will treat everything between the single quotes as one field so it will not be necessary to escape
the spaces. In general, getting all the quotes and escapes correct is a real pain as you can see by the
next example. As a consequence, it is often easier to put everything in a file and simply use the file
name within Bacula. In that case the sh -c will not be necessary providing the first line of the file is
#!/bin/sh.

As an example:

Include {

Options { signature = SHA1 }

File = "|sh -c ’df -l | grep \"^/dev/hd[ab]\" | grep -v \".*/tmp\" \

| awk \"{print \\$6}\"’"

}

will produce a list of all the local partitions on a Red Hat Linux system. Note, the above line was
split, but should normally be written on one line. Quoting is a real problem because you must quote
for Bacula which consists of preceding every \ and every ” with a \, and you must also quote for the
shell command. In the end, it is probably easier just to execute a small file with:

Include {

Options {

signature=MD5

}

File = "|my_partitions"

}

where my partitions has:

#!/bin/sh

df -l | grep "^/dev/hd[ab]" | grep -v ".*/tmp" \

| awk "{print \$6}"

If the vertical bar (|) in front of my partitions is preceded by a backslash as in \|, the program will be
executed on the Client’s machine instead of on the Director’s machine. Please note that if the filename
is given within quotes, you will need to use two slashes. An example, provided by John Donagher, that
backs up all the local UFS partitions on a remote system is:

FileSet {

Name = "All local partitions"

Include {

Options { signature=SHA1; onefs=yes; }

File = "\\|bash -c \"df -klF ufs | tail +2 | awk ’{print \$6}’\""

}

}

150 Bacula Version 5.0.3

The above requires two backslash characters after the double quote (one preserves the next one). If
you are a Linux user, just change the ufs to ext3 (or your preferred filesystem type), and you will be
in business.

If you know what filesystems you have mounted on your system, e.g. for Red Hat Linux normally only
ext2 and ext3, you can backup all local filesystems using something like:

Include {

Options { signature = SHA1; onfs=no; fstype=ext2 }

File = /

}

• Any file-list item preceded by a less-than sign (<) will be taken to be a file. This file will be read on
the Director’s machine (see below for doing it on the Client machine) at the time the Job starts, and
the data will be assumed to be a list of directories or files, one per line, to be included. The names
should start in column 1 and should not be quoted even if they contain spaces. This feature allows
you to modify the external file and change what will be saved without stopping and restarting Bacula
as would be necessary if using the @ modifier noted above. For example:

Include {

Options { signature = SHA1 }

File = "</home/files/local-filelist"

}

If you precede the less-than sign (<) with a backslash as in \<, the file-list will be read on the Client
machine instead of on the Director’s machine. Please note that if the filename is given within quotes,
you will need to use two slashes.

Include {

Options { signature = SHA1 }

File = "\\</home/xxx/filelist-on-client"

}

• If you explicitly specify a block device such as /dev/hda1, then Bacula (starting with version 1.28)
will assume that this is a raw partition to be backed up. In this case, you are strongly urged to specify
a sparse=yes include option, otherwise, you will save the whole partition rather than just the actual
data that the partition contains. For example:

Include {

Options { signature=MD5; sparse=yes }

File = /dev/hd6

}

will backup the data in device /dev/hd6. Note, the bf /dev/hd6 must be the raw partition itself.
Bacula will not back it up as a raw device if you specify a symbolic link to a raw device such as my be
created by the LVM Snapshot utilities.

Ludovic Strappazon has pointed out that this feature can be used to backup a full Microsoft Windows
disk. Simply boot into the system using a Linux Rescue disk, then load a statically linked Bacula as
described in the Disaster Recovery Using Bacula chapter of this manual. Then save the whole disk
partition. In the case of a disaster, you can then restore the desired partition by again booting with
the rescue disk and doing a restore of the partition.

• If you explicitly specify a FIFO device name (created with mkfifo), and you add the option read-
fifo=yes as an option, Bacula will read the FIFO and back its data up to the Volume. For example:

Include {

Options {

signature=SHA1

readfifo=yes

}

File = /home/abc/fifo

}

Bacula Version 5.0.3 151

if /home/abc/fifo is a fifo device, Bacula will open the fifo, read it, and store all data thus obtained
on the Volume. Please note, you must have a process on the system that is writing into the fifo, or
Bacula will hang, and after one minute of waiting, Bacula will give up and go on to the next file. The
data read can be anything since Bacula treats it as a stream.

This feature can be an excellent way to do a ”hot” backup of a very large database. You can use the
RunBeforeJob to create the fifo and to start a program that dynamically reads your database and
writes it to the fifo. Bacula will then write it to the Volume. Be sure to read the readfifo section that
gives a tip to ensure that the RunBeforeJob does not block Bacula.

During the restore operation, the inverse is true, after Bacula creates the fifo if there was any data
stored with it (no need to explicitly list it or add any options), that data will be written back to the
fifo. As a consequence, if any such FIFOs exist in the fileset to be restored, you must ensure that there
is a reader program or Bacula will block, and after one minute, Bacula will time out the write to the
fifo and move on to the next file.

• A file-list may not contain wild-cards. Use directives in the Options resource if you wish to specify
wild-cards or regular expression matching.

• The ExcludeDirContaining = <filename> is a directive that can be added to the Include section
of the FileSet resource. If the specified filename (filename-string) is found on the Client in any
directory to be backed up, the whole directory will be ignored (not backed up). For example:

List of files to be backed up

FileSet {

Name = "MyFileSet"

Include {

Options {

signature = MD5

}

File = /home

Exclude Dir Containing = .excludeme

}

}

But in /home, there may be hundreds of directories of users and some people want to indicate that
they don’t want to have certain directories backed up. For example, with the above FileSet, if the user
or sysadmin creates a file named .excludeme in specific directories, such as

/home/user/www/cache/.excludeme

/home/user/temp/.excludeme

then Bacula will not backup the two directories named:

/home/user/www/cache

/home/user/temp

NOTE: subdirectories will not be backed up. That is, the directive applies to the two directories in
question and any children (be they files, directories, etc).

17.8 FileSet Examples

The following is an example of a valid FileSet resource definition. Note, the first Include pulls in the contents
of the file /etc/backup.list when Bacula is started (i.e. the @), and that file must have each filename to
be backed up preceded by a File = and on a separate line.

FileSet {

Name = "Full Set"

Include {

152 Bacula Version 5.0.3

Options {

Compression=GZIP

signature=SHA1

Sparse = yes

}

@/etc/backup.list

}

Include {

Options {

wildfile = "*.o"

wildfile = "*.exe"

Exclude = yes

}

File = /root/myfile

File = /usr/lib/another_file

}

}

In the above example, all the files contained in /etc/backup.list will be compressed with GZIP compression,
an SHA1 signature will be computed on the file’s contents (its data), and sparse file handling will apply.

The two directories /root/myfile and /usr/lib/another file will also be saved without any options, but all
files in those directories with the extensions .o and .exe will be excluded.

Let’s say that you now want to exclude the directory /tmp. The simplest way to do so is to add an exclude
directive that lists /tmp. The example above would then become:

FileSet {

Name = "Full Set"

Include {

Options {

Compression=GZIP

signature=SHA1

Sparse = yes

}

@/etc/backup.list

}

Include {

Options {

wildfile = "*.o"

wildfile = "*.exe"

Exclude = yes

}

File = /root/myfile

File = /usr/lib/another_file

}

Exclude {

File = /tmp # don’t add trailing /

}

}

You can add wild-cards to the File directives listed in the Exclude directory, but you need to take care
because if you exclude a directory, it and all files and directories below it will also be excluded.

Now lets take a slight variation on the above and suppose you want to save all your whole filesystem except
/tmp. The problem that comes up is that Bacula will not normally cross from one filesystem to another.
Doing a df command, you get the following output:

[kern@rufus k]$ df

Filesystem 1k-blocks Used Available Use% Mounted on

/dev/hda5 5044156 439232 4348692 10% /

/dev/hda1 62193 4935 54047 9% /boot

/dev/hda9 20161172 5524660 13612372 29% /home

/dev/hda2 62217 6843 52161 12% /rescue

/dev/hda8 5044156 42548 4745376 1% /tmp

/dev/hda6 5044156 2613132 2174792 55% /usr

none 127708 0 127708 0% /dev/shm

//minimatou/c$ 14099200 9895424 4203776 71% /mnt/mmatou

lmatou:/ 1554264 215884 1258056 15% /mnt/matou

Bacula Version 5.0.3 153

lmatou:/home 2478140 1589952 760072 68% /mnt/matou/home

lmatou:/usr 1981000 1199960 678628 64% /mnt/matou/usr

lpmatou:/ 995116 484112 459596 52% /mnt/pmatou

lpmatou:/home 19222656 2787880 15458228 16% /mnt/pmatou/home

lpmatou:/usr 2478140 2038764 311260 87% /mnt/pmatou/usr

deuter:/ 4806936 97684 4465064 3% /mnt/deuter

deuter:/home 4806904 280100 4282620 7% /mnt/deuter/home

deuter:/files 44133352 27652876 14238608 67% /mnt/deuter/files

And we see that there are a number of separate filesystems (/ /boot /home /rescue /tmp and /usr not to
mention mounted systems). If you specify only / in your Include list, Bacula will only save the Filesystem
/dev/hda5. To save all filesystems except /tmp with out including any of the Samba or NFS mounted
systems, and explicitly excluding a /tmp, /proc, .journal, and .autofsck, which you will not want to be saved
and restored, you can use the following:

FileSet {

Name = Include_example

Include {

Options {

wilddir = /proc

wilddir = /tmp

wildfile = "/.journal"

wildfile = "/.autofsck"

exclude = yes

}

File = /

File = /boot

File = /home

File = /rescue

File = /usr

}

}

Since /tmp is on its own filesystem and it was not explicitly named in the Include list, it is not really needed
in the exclude list. It is better to list it in the Exclude list for clarity, and in case the disks are changed so
that it is no longer in its own partition.

Now, lets assume you only want to backup .Z and .gz files and nothing else. This is a bit trickier because
Bacula by default will select everything to backup, so we must exclude everything but .Z and .gz files. If
we take the first example above and make the obvious modifications to it, we might come up with a FileSet
that looks like this:

FileSet {

Name = "Full Set"

Include { !!!!!!!!!!!!

Options { This

wildfile = "*.Z" example

wildfile = "*.gz" doesn’t

work

} !!!!!!!!!!!!

File = /myfile

}

}

The *.Z and *.gz files will indeed be backed up, but all other files that are not matched by the Options
directives will automatically be backed up too (i.e. that is the default rule).

To accomplish what we want, we must explicitly exclude all other files. We do this with the following:

FileSet {

Name = "Full Set"

Include {

Options {

wildfile = "*.Z"

wildfile = "*.gz"

}

154 Bacula Version 5.0.3

Options {

Exclude = yes

RegexFile = ".*"

}

File = /myfile

}

}

The ”trick” here was to add a RegexFile expression that matches all files. It does not match directory names,
so all directories in /myfile will be backed up (the directory entry) and any *.Z and *.gz files contained in
them. If you know that certain directories do not contain any *.Z or *.gz files and you do not want the
directory entries backed up, you will need to explicitly exclude those directories. Backing up a directory
entries is not very expensive.

Bacula uses the system regex library and some of them are different on different OSes. The above has
been reported not to work on FreeBSD. This can be tested by using the estimate job=job-name listing
command in the console and adapting the RegexFile expression appropriately. In a future version of Bacula,
we will supply our own Regex code to avoid such system dependencies.

Please be aware that allowing Bacula to traverse or change file systems can be very dangerous. For example,
with the following:

FileSet {

Name = "Bad example"

Include {

Options { onefs=no }

File = /mnt/matou

}

}

you will be backing up an NFS mounted partition (/mnt/matou), and since onefs is set to no, Bacula will
traverse file systems. Now if /mnt/matou has the current machine’s file systems mounted, as is often the
case, you will get yourself into a recursive loop and the backup will never end.

As a final example, let’s say that you have only one or two subdirectories of /home that you want to backup.
For example, you want to backup only subdirectories beginning with the letter a and the letter b – i.e.
/home/a* and /home/b*. Now, you might first try:

FileSet {

Name = "Full Set"

Include {

Options {

wilddir = "/home/a*"

wilddir = "/home/b*"

}

File = /home

}

}

The problem is that the above will include everything in /home. To get things to work correctly, you need
to start with the idea of exclusion instead of inclusion. So, you could simply exclude all directories except
the two you want to use:

FileSet {

Name = "Full Set"

Include {

Options {

RegexDir = "^/home/[c-z]"

exclude = yes

}

File = /home

}

}

And assuming that all subdirectories start with a lowercase letter, this would work.

An alternative would be to include the two subdirectories desired and exclude everything else:

Bacula Version 5.0.3 155

FileSet {

Name = "Full Set"

Include {

Options {

wilddir = "/home/a*"

wilddir = "/home/b*"

}

Options {

RegexDir = ".*"

exclude = yes

}

File = /home

}

}

The following example shows how to back up only the My Pictures directory inside the My Documents
directory for all users in C:/Documents and Settings, i.e. everything matching the pattern:

C:/Documents and Settings/*/My Documents/My Pictures/*

To understand how this can be achieved, there are two important points to remember:

Firstly, Bacula walks over the filesystem depth-first starting from the File = lines. It stops descending when
a directory is excluded, so you must include all ancestor directories of each directory containing files to be
included.

Secondly, each directory and file is compared to the Options clauses in the order they appear in the FileSet.
When a match is found, no further clauses are compared and the directory or file is either included or
excluded.

The FileSet resource definition below implements this by including specifc directories and files and excluding
everything else.

FileSet {

Name = "AllPictures"

Include {

File = "C:/Documents and Settings"

Options {

signature = SHA1

verify = s1

IgnoreCase = yes

Include all users’ directories so we reach the inner ones. Unlike a

WildDir pattern ending in *, this RegExDir only matches the top-level

directories and not any inner ones.

RegExDir = "^C:/Documents and Settings/[^/]+$"

Ditto all users’ My Documents directories.

WildDir = "C:/Documents and Settings/*/My Documents"

Ditto all users’ My Documents/My Pictures directories.

WildDir = "C:/Documents and Settings/*/My Documents/My Pictures"

Include the contents of the My Documents/My Pictures directories and

any subdirectories.

Wild = "C:/Documents and Settings/*/My Documents/My Pictures/*"

}

Options {

Exclude = yes

IgnoreCase = yes

Exclude everything else, in particular any files at the top level and

any other directories or files in the users’ directories.

Wild = "C:/Documents and Settings/*"

}

}

}

156 Bacula Version 5.0.3

17.9 Backing up Raw Partitions

The following FileSet definition will backup a raw partition:

FileSet {

Name = "RawPartition"

Include {

Options { sparse=yes }

File = /dev/hda2

}

}

While backing up and restoring a raw partition, you should ensure that no other process including the system
is writing to that partition. As a precaution, you are strongly urged to ensure that the raw partition is not
mounted or is mounted read-only. If necessary, this can be done using the RunBeforeJob directive.

17.10 Excluding Files and Directories

You may also include full filenames or directory names in addition to using wild-cards and Exclude=yes in
the Options resource as specified above by simply including the files to be excluded in an Exclude resource
within the FileSet. It accepts wild-cards pattern, so for a directory, don’t add a trailing /. For example:

FileSet {

Name = Exclusion_example

Include {

Options {

Signature = SHA1

}

File = /

File = /boot

File = /home

File = /rescue

File = /usr

}

Exclude {

File = /proc

File = /tmp # Don’t add trailing /

File = .journal

File = .autofsck

}

}

17.11 Windows FileSets

If you are entering Windows file names, the directory path may be preceded by the drive and a colon (as in
c:). However, the path separators must be specified in Unix convention (i.e. forward slash (/)). If you wish
to include a quote in a file name, precede the quote with a backslash (\). For example you might use the
following for a Windows machine to backup the ”My Documents” directory:

FileSet {

Name = "Windows Set"

Include {

Options {

WildFile = "*.obj"

WildFile = "*.exe"

exclude = yes

}

File = "c:/My Documents"

}

}

Bacula Version 5.0.3 157

For exclude lists to work correctly on Windows, you must observe the following rules:

• Filenames are case sensitive, so you must use the correct case.

• To exclude a directory, you must not have a trailing slash on the directory name.

• If you have spaces in your filename, you must enclose the entire name in double-quote characters (”).
Trying to use a backslash before the space will not work.

• If you are using the old Exclude syntax (noted below), you may not specify a drive letter in the exclude.
The new syntax noted above should work fine including driver letters.

Thanks to Thiago Lima for summarizing the above items for us. If you are having difficulties getting includes
or excludes to work, you might want to try using the estimate job=xxx listing command documented in
the Console chapter of this manual.

On Win32 systems, if you move a directory or file or rename a file into the set of files being backed up,
and a Full backup has already been made, Bacula will not know there are new files to be saved during an
Incremental or Differential backup (blame Microsoft, not me). To avoid this problem, please copy any new
directory or files into the backup area. If you do not have enough disk to copy the directory or files, move
them, but then initiate a Full backup.

A Windows Example FileSet The following example was contributed by Russell Howe. Please note
that for presentation purposes, the lines beginning with Data and Internet have been wrapped and should
included on the previous line with one space.

This is my Windows 2000 fileset:

FileSet {

Name = "Windows 2000"

Include {

Options {

signature = MD5

Exclude = yes

IgnoreCase = yes

Exclude Mozilla-based programs’ file caches

WildDir = "[A-Z]:/Documents and Settings/*/Application

Data/*/Profiles/*/*/Cache"

WildDir = "[A-Z]:/Documents and Settings/*/Application

Data/*/Profiles/*/*/Cache.Trash"

WildDir = "[A-Z]:/Documents and Settings/*/Application

Data/*/Profiles/*/*/ImapMail"

Exclude user’s registry files - they’re always in use anyway.

WildFile = "[A-Z]:/Documents and Settings/*/Local Settings/Application

Data/Microsoft/Windows/usrclass.*"

WildFile = "[A-Z]:/Documents and Settings/*/ntuser.*"

Exclude directories full of lots and lots of useless little files

WildDir = "[A-Z]:/Documents and Settings/*/Cookies"

WildDir = "[A-Z]:/Documents and Settings/*/Recent"

WildDir = "[A-Z]:/Documents and Settings/*/Local Settings/History"

WildDir = "[A-Z]:/Documents and Settings/*/Local Settings/Temp"

WildDir = "[A-Z]:/Documents and Settings/*/Local Settings/Temporary

Internet Files"

These are always open and unable to be backed up

WildFile = "[A-Z]:/Documents and Settings/All Users/Application

Data/Microsoft/Network/Downloader/qmgr[01].dat"

Some random bits of Windows we want to ignore

WildFile = "[A-Z]:/WINNT/security/logs/scepol.log"

WildDir = "[A-Z]:/WINNT/system32/config"

WildDir = "[A-Z]:/WINNT/msdownld.tmp"

WildDir = "[A-Z]:/WINNT/Internet Logs"

WildDir = "[A-Z]:/WINNT/$Nt*Uninstall*"

WildDir = "[A-Z]:/WINNT/sysvol"

WildFile = "[A-Z]:/WINNT/cluster/CLUSDB"

158 Bacula Version 5.0.3

WildFile = "[A-Z]:/WINNT/cluster/CLUSDB.LOG"

WildFile = "[A-Z]:/WINNT/NTDS/edb.log"

WildFile = "[A-Z]:/WINNT/NTDS/ntds.dit"

WildFile = "[A-Z]:/WINNT/NTDS/temp.edb"

WildFile = "[A-Z]:/WINNT/ntfrs/jet/log/edb.log"

WildFile = "[A-Z]:/WINNT/ntfrs/jet/ntfrs.jdb"

WildFile = "[A-Z]:/WINNT/ntfrs/jet/temp/tmp.edb"

WildFile = "[A-Z]:/WINNT/system32/CPL.CFG"

WildFile = "[A-Z]:/WINNT/system32/dhcp/dhcp.mdb"

WildFile = "[A-Z]:/WINNT/system32/dhcp/j50.log"

WildFile = "[A-Z]:/WINNT/system32/dhcp/tmp.edb"

WildFile = "[A-Z]:/WINNT/system32/LServer/edb.log"

WildFile = "[A-Z]:/WINNT/system32/LServer/TLSLic.edb"

WildFile = "[A-Z]:/WINNT/system32/LServer/tmp.edb"

WildFile = "[A-Z]:/WINNT/system32/wins/j50.log"

WildFile = "[A-Z]:/WINNT/system32/wins/wins.mdb"

WildFile = "[A-Z]:/WINNT/system32/wins/winstmp.mdb"

Temporary directories & files

WildDir = "[A-Z]:/WINNT/Temp"

WildDir = "[A-Z]:/temp"

WildFile = "*.tmp"

WildDir = "[A-Z]:/tmp"

WildDir = "[A-Z]:/var/tmp"

Recycle bins

WildDir = "[A-Z]:/RECYCLER"

Swap files

WildFile = "[A-Z]:/pagefile.sys"

These are programs and are easier to reinstall than restore from

backup

WildDir = "[A-Z]:/cygwin"

WildDir = "[A-Z]:/Program Files/Grisoft"

WildDir = "[A-Z]:/Program Files/Java"

WildDir = "[A-Z]:/Program Files/Java Web Start"

WildDir = "[A-Z]:/Program Files/JavaSoft"

WildDir = "[A-Z]:/Program Files/Microsoft Office"

WildDir = "[A-Z]:/Program Files/Mozilla Firefox"

WildDir = "[A-Z]:/Program Files/Mozilla Thunderbird"

WildDir = "[A-Z]:/Program Files/mozilla.org"

WildDir = "[A-Z]:/Program Files/OpenOffice*"

}

Our Win2k boxen all have C: and D: as the main hard drives.

File = "C:/"

File = "D:/"

}

}

Note, the three line of the above Exclude were split to fit on the document page, they should be written on
a single line in real use.

Windows NTFS Naming Considerations NTFS filenames containing Unicode characters should now
be supported as of version 1.37.30 or later.

17.12 Testing Your FileSet

If you wish to get an idea of what your FileSet will really backup or if your exclusion rules will work correctly,
you can test it by using the estimate command in the Console program. See the estimate in the Console
chapter of this manual.

As an example, suppose you add the following test FileSet:

FileSet {

Bacula Version 5.0.3 159

Name = Test

Include {

File = /home/xxx/test

Options {

regex = ".*\.c$"

}

}

}

You could then add some test files to the directory /home/xxx/test and use the following command in
the console:

estimate job=<any-job-name> listing client=<desired-client> fileset=Test

to give you a listing of all files that match.

17.13 The Client Resource

The Client resource defines the attributes of the Clients that are served by this Director; that is the machines
that are to be backed up. You will need one Client resource definition for each machine to be backed up.

Client (or FileDaemon) Start of the Client directives.

Name = <name> The client name which will be used in the Job resource directive or in the console run
command. This directive is required.

Address = <address> Where the address is a host name, a fully qualified domain name, or a network
address in dotted quad notation for a Bacula File server daemon. This directive is required.

FD Port = <port-number> Where the port is a port number at which the Bacula File server daemon
can be contacted. The default is 9102.

Catalog = <Catalog-resource-name> This specifies the name of the catalog resource to be used for
this Client. This directive is required.

Password = <password> This is the password to be used when establishing a connection with the File
services, so the Client configuration file on the machine to be backed up must have the same password
defined for this Director. This directive is required. If you have either /dev/random bc on your
machine, Bacula will generate a random password during the configuration process, otherwise it will
be left blank.

The password is plain text. It is not generated through any special process, but it is preferable for
security reasons to make the text random.

File Retention = <time-period-specification> The File Retention directive defines the length of time
that Bacula will keep File records in the Catalog database after the End time of the Job corresponding
to the File records. When this time period expires, and if AutoPrune is set to yes Bacula will prune
(remove) File records that are older than the specified File Retention period. Note, this affects only
records in the catalog database. It does not affect your archive backups.

File records may actually be retained for a shorter period than you specify on this directive if you specify
either a shorter Job Retention or a shorterVolume Retention period. The shortest retention period
of the three takes precedence. The time may be expressed in seconds, minutes, hours, days, weeks,
months, quarters, or years. See the Configuration chapter of this manual for additional details of time
specification.

The default is 60 days.

Job Retention = <time-period-specification> The Job Retention directive defines the length of time
that Bacula will keep Job records in the Catalog database after the Job End time. When this time
period expires, and if AutoPrune is set to yes Bacula will prune (remove) Job records that are older

160 Bacula Version 5.0.3

than the specified File Retention period. As with the other retention periods, this affects only records
in the catalog and not data in your archive backup.

If a Job record is selected for pruning, all associated File and JobMedia records will also be pruned
regardless of the File Retention period set. As a consequence, you normally will set the File retention
period to be less than the Job retention period. The Job retention period can actually be less than the
value you specify here if you set the Volume Retention directive in the Pool resource to a smaller
duration. This is because the Job retention period and the Volume retention period are independently
applied, so the smaller of the two takes precedence.

The Job retention period is specified as seconds, minutes, hours, days, weeks, months, quarters, or
years. See the Configuration chapter of this manual for additional details of time specification.

The default is 180 days.

AutoPrune = <yes|no> If AutoPrune is set to yes (default), Bacula (version 1.20 or greater) will auto-
matically apply the File retention period and the Job retention period for the Client at the end of the
Job. If you set AutoPrune = no, pruning will not be done, and your Catalog will grow in size each
time you run a Job. Pruning affects only information in the catalog and not data stored in the backup
archives (on Volumes).

Maximum Concurrent Jobs = <number> where <number> is the maximum number of Jobs with the
current Client that can run concurrently. Note, this directive limits only Jobs for Clients with the same
name as the resource in which it appears. Any other restrictions on the maximum concurrent jobs
such as in the Director, Job, or Storage resources will also apply in addition to any limit specified here.
The default is set to 1, but you may set it to a larger number.

Priority = <number> The number specifies the priority of this client relative to other clients that the
Director is processing simultaneously. The priority can range from 1 to 1000. The clients are ordered
such that the smaller number priorities are performed first (not currently implemented).

The following is an example of a valid Client resource definition:

Client {

Name = Minimatou

FDAddress = minimatou

Catalog = MySQL

Password = very_good

}

17.14 The Storage Resource

The Storage resource defines which Storage daemons are available for use by the Director.

Storage Start of the Storage resources. At least one storage resource must be specified.

Name = <name> The name of the storage resource. This name appears on the Storage directive specified
in the Job resource and is required.

Address = <address> Where the address is a host name, a fully qualified domain name, or an IP
address. Please note that the <address> as specified here will be transmitted to the File daemon
who will then use it to contact the Storage daemon. Hence, it is not, a good idea to use localhost as
the name but rather a fully qualified machine name or an IP address. This directive is required.

SD Port = <port> Where port is the port to use to contact the storage daemon for information and
to start jobs. This same port number must appear in the Storage resource of the Storage daemon’s
configuration file. The default is 9103.

Password = <password> This is the password to be used when establishing a connection with the Storage
services. This same password also must appear in the Director resource of the Storage daemon’s
configuration file. This directive is required. If you have either /dev/random bc on your machine,

Bacula Version 5.0.3 161

Bacula will generate a random password during the configuration process, otherwise it will be left
blank.

The password is plain text. It is not generated through any special process, but it is preferable for
security reasons to use random text.

Device = <device-name> This directive specifies the Storage daemon’s name of the device resource to
be used for the storage. If you are using an Autochanger, the name specified here should be the name of
the Storage daemon’s Autochanger resource rather than the name of an individual device. This name is
not the physical device name, but the logical device name as defined on the Name directive contained
in the Device or the Autochanger resource definition of the Storage daemon configuration file.
You can specify any name you would like (even the device name if you prefer) up to a maximum of 127
characters in length. The physical device name associated with this device is specified in the Storage
daemon configuration file (as Archive Device). Please take care not to define two different Storage
resource directives in the Director that point to the same Device in the Storage daemon. Doing so
may cause the Storage daemon to block (or hang) attempting to open the same device that is already
open. This directive is required.

Media Type = <MediaType> This directive specifies the Media Type to be used to store the data. This
is an arbitrary string of characters up to 127 maximum that you define. It can be anything you want.
However, it is best to make it descriptive of the storage media (e.g. File, DAT, ”HP DLT8000”, 8mm,
...). In addition, it is essential that you make the Media Type specification unique for each storage
media type. If you have two DDS-4 drives that have incompatible formats, or if you have a DDS-4
drive and a DDS-4 autochanger, you almost certainly should specify different Media Types. During
a restore, assuming a DDS-4 Media Type is associated with the Job, Bacula can decide to use any
Storage daemon that supports Media Type DDS-4 and on any drive that supports it.

If you are writing to disk Volumes, you must make doubly sure that each Device resource defined in
the Storage daemon (and hence in the Director’s conf file) has a unique media type. Otherwise for
Bacula versions 1.38 and older, your restores may not work because Bacula will assume that you can
mount any Media Type with the same name on any Device associated with that Media Type. This is
possible with tape drives, but with disk drives, unless you are very clever you cannot mount a Volume
in any directory – this can be done by creating an appropriate soft link.

Currently Bacula permits only a single Media Type per Storage and Device definition. Consequently,
if you have a drive that supports more than one Media Type, you can give a unique string to Volumes
with different intrinsic Media Type (Media Type = DDS-3-4 for DDS-3 and DDS-4 types), but then
those volumes will only be mounted on drives indicated with the dual type (DDS-3-4).

If you want to tie Bacula to using a single Storage daemon or drive, you must specify a unique Media
Type for that drive. This is an important point that should be carefully understood. Note, this applies
equally to Disk Volumes. If you define more than one disk Device resource in your Storage daemon’s
conf file, the Volumes on those two devices are in fact incompatible because one can not be mounted
on the other device since they are found in different directories. For this reason, you probably should
use two different Media Types for your two disk Devices (even though you might think of them as both
being File types). You can find more on this subject in the Basic Volume Management chapter of this
manual.

The MediaType specified in the Director’s Storage resource, must correspond to the Media Type
specified in the Device resource of the Storage daemon configuration file. This directive is required,
and it is used by the Director and the Storage daemon to ensure that a Volume automatically selected
from the Pool corresponds to the physical device. If a Storage daemon handles multiple devices (e.g.
will write to various file Volumes on different partitions), this directive allows you to specify exactly
which device.

As mentioned above, the value specified in the Director’s Storage resource must agree with the value
specified in the Device resource in the Storage daemon’s configuration file. It is also an additional
check so that you don’t try to write data for a DLT onto an 8mm device.

Autochanger = <yes|no> If you specify yes for this command (the default is no), when you use the label
command or the add command to create a new Volume, Bacula will also request the Autochanger
Slot number. This simplifies creating database entries for Volumes in an autochanger. If you forget
to specify the Slot, the autochanger will not be used. However, you may modify the Slot associated
with a Volume at any time by using the update volume or update slots command in the console
program. When autochanger is enabled, the algorithm used by Bacula to search for available volumes

162 Bacula Version 5.0.3

will be modified to consider only Volumes that are known to be in the autochanger’s magazine. If no
in changer volume is found, Bacula will attempt recycling, pruning, ..., and if still no volume is found,
Bacula will search for any volume whether or not in the magazine. By privileging in changer volumes,
this procedure minimizes operator intervention. The default is no.

For the autochanger to be used, you must also specify Autochanger = yes in the Device Resource
in the Storage daemon’s configuration file as well as other important Storage daemon configuration
information. Please consult the Using Autochangers manual of this chapter for the details of using
autochangers.

Maximum Concurrent Jobs = <number> where <number> is the maximum number of Jobs with
the current Storage resource that can run concurrently. Note, this directive limits only Jobs for Jobs
using this Storage daemon. Any other restrictions on the maximum concurrent jobs such as in the
Director, Job, or Client resources will also apply in addition to any limit specified here. The default
is set to 1, but you may set it to a larger number. However, if you set the Storage daemon’s number
of concurrent jobs greater than one, we recommend that you read the waring documented under
Maximum Concurrent Jobs in the Director’s resource or simply turn data spooling on as documented
in the Data Spooling chapter of this manual.

AllowCompression = <yes|no> This directive is optional, and if you specify No (the default is Yes), it
will cause backups jobs running on this storage resource to run without client File Daemon compression.
This effectively overrides compression options in FileSets used by jobs which use this storage resource.

Heartbeat Interval = <time-interval> This directive is optional and if specified will cause the Director
to set a keepalive interval (heartbeat) in seconds on each of the sockets it opens for the Storage resource.
This value will override any specified at the Director level. It is implemented only on systems (Linux,
...) that provide the setsockopt TCP KEEPIDLE function. The default value is zero, which means
no change is made to the socket.

The following is an example of a valid Storage resource definition:

Definition of tape storage device

Storage {

Name = DLTDrive

Address = lpmatou

Password = storage_password # password for Storage daemon

Device = "HP DLT 80" # same as Device in Storage daemon

Media Type = DLT8000 # same as MediaType in Storage daemon

}

17.15 The Pool Resource

The Pool resource defines the set of storage Volumes (tapes or files) to be used by Bacula to write the data.
By configuring different Pools, you can determine which set of Volumes (media) receives the backup data.
This permits, for example, to store all full backup data on one set of Volumes and all incremental backups
on another set of Volumes. Alternatively, you could assign a different set of Volumes to each machine that
you backup. This is most easily done by defining multiple Pools.

Another important aspect of a Pool is that it contains the default attributes (Maximum Jobs, Retention
Period, Recycle flag, ...) that will be given to a Volume when it is created. This avoids the need for you
to answer a large number of questions when labeling a new Volume. Each of these attributes can later be
changed on a Volume by Volume basis using the update command in the console program. Note that you
must explicitly specify which Pool Bacula is to use with each Job. Bacula will not automatically search for
the correct Pool.

Most often in Bacula installations all backups for all machines (Clients) go to a single set of Volumes. In
this case, you will probably only use the Default Pool. If your backup strategy calls for you to mount a
different tape each day, you will probably want to define a separate Pool for each day. For more information
on this subject, please see the Backup Strategies chapter of this manual.

Bacula Version 5.0.3 163

To use a Pool, there are three distinct steps. First the Pool must be defined in the Director’s configuration
file. Then the Pool must be written to the Catalog database. This is done automatically by the Director
each time that it starts, or alternatively can be done using the create command in the console program.
Finally, if you change the Pool definition in the Director’s configuration file and restart Bacula, the pool will
be updated alternatively you can use the update pool console command to refresh the database image. It is
this database image rather than the Director’s resource image that is used for the default Volume attributes.
Note, for the pool to be automatically created or updated, it must be explicitly referenced by a Job resource.

Next the physical media must be labeled. The labeling can either be done with the label command in the
console program or using the btape program. The preferred method is to use the label command in the
console program.

Finally, you must add Volume names (and their attributes) to the Pool. For Volumes to be used by Bacula
they must be of the same Media Type as the archive device specified for the job (i.e. if you are going to
back up to a DLT device, the Pool must have DLT volumes defined since 8mm volumes cannot be mounted
on a DLT drive). The Media Type has particular importance if you are backing up to files. When running
a Job, you must explicitly specify which Pool to use. Bacula will then automatically select the next Volume
to use from the Pool, but it will ensure that the Media Type of any Volume selected from the Pool is
identical to that required by the Storage resource you have specified for the Job.

If you use the label command in the console program to label the Volumes, they will automatically be added
to the Pool, so this last step is not normally required.

It is also possible to add Volumes to the database without explicitly labeling the physical volume. This is
done with the add console command.

As previously mentioned, each time Bacula starts, it scans all the Pools associated with each Catalog, and
if the database record does not already exist, it will be created from the Pool Resource definition. Bacula
probably should do an update pool if you change the Pool definition, but currently, you must do this
manually using the update pool command in the Console program.

The Pool Resource defined in the Director’s configuration file (bacula-dir.conf) may contain the following
directives:

Pool Start of the Pool resource. There must be at least one Pool resource defined.

Name = <name> The name of the pool. For most applications, you will use the default pool name
Default. This directive is required.

Maximum Volumes = <number> This directive specifies the maximum number of volumes (tapes or
files) contained in the pool. This directive is optional, if omitted or set to zero, any number of volumes
will be permitted. In general, this directive is useful for Autochangers where there is a fixed number
of Volumes, or for File storage where you wish to ensure that the backups made to disk files do not
become too numerous or consume too much space.

Pool Type = <type> This directive defines the pool type, which corresponds to the type of Job being
run. It is required and may be one of the following:

Backup

*Archive

*Cloned

*Migration

*Copy

*Save

Note, only Backup is current implemented.

Storage = <storage-resource-name> The Storage directive defines the name of the storage services
where you want to backup the FileSet data. For additional details, see the Storage Resource Chapter
of this manual. The Storage resource may also be specified in the Job resource, but the value, if any,
in the Pool resource overrides any value in the Job. This Storage resource definition is not required by

164 Bacula Version 5.0.3

either the Job resource or in the Pool, but it must be specified in one or the other. If not configuration
error will result.

Use Volume Once = <yes|no> This directive if set to yes specifies that each volume is to be used only
once. This is most useful when the Media is a file and you want a new file for each backup that is done.
The default is no (i.e. use volume any number of times). This directive will most likely be phased out
(deprecated), so you are recommended to use Maximum Volume Jobs = 1 instead.

The value defined by this directive in the bacula-dir.conf file is the default value used when a Volume
is created. Once the volume is created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing Volume you must use the update
command in the Console.

Please see the notes below under Maximum Volume Jobs concerning using this directive with
multiple simultaneous jobs.

Maximum Volume Jobs = <positive-integer> This directive specifies the maximum number of Jobs
that can be written to the Volume. If you specify zero (the default), there is no limit. Otherwise,
when the number of Jobs backed up to the Volume equals positive-integer the Volume will be
marked Used. When the Volume is marked Used it can no longer be used for appending Jobs, much
like the Full status but it can be recycled if recycling is enabled, and thus used again. By setting
MaximumVolumeJobs to one, you get the same effect as setting UseVolumeOnce = yes.

The value defined by this directive in the bacula-dir.conf file is the default value used when a Volume
is created. Once the volume is created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing Volume you must use the update
command in the Console.

If you are running multiple simultaneous jobs, this directive may not work correctly because when a
drive is reserved for a job, this directive is not taken into account, so multiple jobs may try to start
writing to the Volume. At some point, when the Media record is updated, multiple simultaneous jobs
may fail since the Volume can no longer be written.

Maximum Volume Files = <positive-integer> This directive specifies the maximum number of files
that can be written to the Volume. If you specify zero (the default), there is no limit. Otherwise, when
the number of files written to the Volume equals positive-integer the Volume will be marked Used.
When the Volume is marked Used it can no longer be used for appending Jobs, much like the Full
status but it can be recycled if recycling is enabled and thus used again. This value is checked and the
Used status is set only at the end of a job that writes to the particular volume.

The value defined by this directive in the bacula-dir.conf file is the default value used when a Volume
is created. Once the volume is created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing Volume you must use the update
command in the Console.

Maximum Volume Bytes = <size> This directive specifies the maximum number of bytes that can be
written to the Volume. If you specify zero (the default), there is no limit except the physical size of
the Volume. Otherwise, when the number of bytes written to the Volume equals size the Volume will
be marked Used. When the Volume is marked Used it can no longer be used for appending Jobs,
much like the Full status but it can be recycled if recycling is enabled, and thus the Volume can be
re-used after recycling. This value is checked and the Used status set while the job is writing to the
particular volume.

This directive is particularly useful for restricting the size of disk volumes, and will work correctly even
in the case of multiple simultaneous jobs writing to the volume.

The value defined by this directive in the bacula-dir.conf file is the default value used when a Volume
is created. Once the volume is created, changing the value in the bacula-dir.conf file will not change
what is stored for the Volume. To change the value for an existing Volume you must use the update
command in the Console.

Volume Use Duration = <time-period-specification> The Volume Use Duration directive defines
the time period that the Volume can be written beginning from the time of first data write to the
Volume. If the time-period specified is zero (the default), the Volume can be written indefinitely. Oth-
erwise, the next time a job runs that wants to access this Volume, and the time period from the first
write to the volume (the first Job written) exceeds the time-period-specification, the Volume will be
marked Used, which means that no more Jobs can be appended to the Volume, but it may be recycled

Bacula Version 5.0.3 165

if recycling is enabled. Using the command status dir applies algorithms similar to running jobs, so
during such a command, the Volume status may also be changed. Once the Volume is recycled, it will
be available for use again.

You might use this directive, for example, if you have a Volume used for Incremental backups, and
Volumes used for Weekly Full backups. Once the Full backup is done, you will want to use a different
Incremental Volume. This can be accomplished by setting the Volume Use Duration for the Incremental
Volume to six days. I.e. it will be used for the 6 days following a Full save, then a different Incremental
volume will be used. Be careful about setting the duration to short periods such as 23 hours, or you
might experience problems of Bacula waiting for a tape over the weekend only to complete the backups
Monday morning when an operator mounts a new tape.

The use duration is checked and the Used status is set only at the end of a job that writes to the
particular volume, which means that even though the use duration may have expired, the catalog entry
will not be updated until the next job that uses this volume is run. This directive is not intended to
be used to limit volume sizes and will not work correctly (i.e. will fail jobs) if the use duration expires
while multiple simultaneous jobs are writing to the volume.

Please note that the value defined by this directive in the bacula-dir.conf file is the default value used
when a Volume is created. Once the volume is created, changing the value in the bacula-dir.conf file
will not change what is stored for the Volume. To change the value for an existing Volume you must
use the update volume command in the Console.

Catalog Files = <yes|no> This directive defines whether or not you want the names of the files that were
saved to be put into the catalog. The default is yes. The advantage of specifying Catalog Files =
No is that you will have a significantly smaller Catalog database. The disadvantage is that you will not
be able to produce a Catalog listing of the files backed up for each Job (this is often called Browsing).
Also, without the File entries in the catalog, you will not be able to use the Console restore command
nor any other command that references File entries.

AutoPrune = <yes|no> If AutoPrune is set to yes (default), Bacula (version 1.20 or greater) will auto-
matically apply the Volume Retention period when new Volume is needed and no appendable Volumes
exist in the Pool. Volume pruning causes expired Jobs (older than the Volume Retention period)
to be deleted from the Catalog and permits possible recycling of the Volume.

Volume Retention = <time-period-specification> The Volume Retention directive defines the length
of time that Bacula will keep records associated with the Volume in the Catalog database after the
End time of each Job written to the Volume. When this time period expires, and if AutoPrune is
set to yes Bacula may prune (remove) Job records that are older than the specified Volume Retention
period if it is necessary to free up a Volume. Recycling will not occur until it is absolutely necessary
to free up a volume (i.e. no other writable volume exists). All File records associated with pruned
Jobs are also pruned. The time may be specified as seconds, minutes, hours, days, weeks, months,
quarters, or years. The Volume Retention is applied independently of the Job Retention and the
File Retention periods defined in the Client resource. This means that all the retentions periods are
applied in turn and that the shorter period is the one that effectively takes precedence. Note, that
when the Volume Retention period has been reached, and it is necessary to obtain a new volume,
Bacula will prune both the Job and the File records. This pruning could also occur during a status
dir command because it uses similar algorithms for finding the next available Volume.

It is important to know that when the Volume Retention period expires, Bacula does not automatically
recycle a Volume. It attempts to keep the Volume data intact as long as possible before over writing
the Volume.

By defining multiple Pools with different Volume Retention periods, you may effectively have a set of
tapes that is recycled weekly, another Pool of tapes that is recycled monthly and so on. However, one
must keep in mind that if your Volume Retention period is too short, it may prune the last valid
Full backup, and hence until the next Full backup is done, you will not have a complete backup of
your system, and in addition, the next Incremental or Differential backup will be promoted to a Full
backup. As a consequence, the minimum Volume Retention period should be at twice the interval
of your Full backups. This means that if you do a Full backup once a month, the minimum Volume
retention period should be two months.

The default Volume retention period is 365 days, and either the default or the value defined by this
directive in the bacula-dir.conf file is the default value used when a Volume is created. Once the volume
is created, changing the value in the bacula-dir.conf file will not change what is stored for the Volume.
To change the value for an existing Volume you must use the update command in the Console.

166 Bacula Version 5.0.3

Action On Purge = <Truncate This directive ActionOnPurge=Truncate instructs Bacula to trun-
cate the volume when it is purged with the purge volume action=truncate command. It is useful
to prevent disk based volumes from consuming too much space.

Pool {

Name = Default

Action On Purge = Truncate

...

}

You can schedule the truncate operation at the end of your CatalogBackup job like in this example:

Job {

Name = CatalogBackup

...

RunScript {

RunsWhen=After

RunsOnClient=No

Console = "purge volume action=all allpools storage=File"

}

}

ScratchPool = <pool-resource-name> This directive permits to specify a dedicate Scratch for the cur-
rent pool. This pool will replace the special pool named Scrach for volume selection. For more
information about Scratch see Scratch Pool section of this manual. This is useful when using multiple
storage sharing the same mediatype or when you want to dedicate volumes to a particular set of pool.

RecyclePool = <pool-resource-name> This directive defines to which pool the Volume will be placed
(moved) when it is recycled. Without this directive, a Volume will remain in the same pool when it is
recycled. With this directive, it can be moved automatically to any existing pool during a recycle. This
directive is probably most useful when defined in the Scratch pool, so that volumes will be recycled
back into the Scratch pool. For more on the see the Scratch Pool section of this manual.

Although this directive is called RecyclePool, the Volume in question is actually moved from its current
pool to the one you specify on this directive when Bacula prunes the Volume and discovers that there
are no records left in the catalog and hence marks it as Purged.

Recycle = <yes|no> This directive specifies whether or not Purged Volumes may be recycled. If it is set
to yes (default) and Bacula needs a volume but finds none that are appendable, it will search for and
recycle (reuse) Purged Volumes (i.e. volumes with all the Jobs and Files expired and thus deleted from
the Catalog). If the Volume is recycled, all previous data written to that Volume will be overwritten.
If Recycle is set to no, the Volume will not be recycled, and hence, the data will remain valid. If you
want to reuse (re-write) the Volume, and the recycle flag is no (0 in the catalog), you may manually
set the recycle flag (update command) for a Volume to be reused.

Please note that the value defined by this directive in the bacula-dir.conf file is the default value used
when a Volume is created. Once the volume is created, changing the value in the bacula-dir.conf file
will not change what is stored for the Volume. To change the value for an existing Volume you must
use the update command in the Console.

When all Job and File records have been pruned or purged from the catalog for a particular Volume,
if that Volume is marked as Append, Full, Used, or Error, it will then be marked as Purged. Only
Volumes marked as Purged will be considered to be converted to the Recycled state if the Recycle
directive is set to yes.

Recycle Oldest Volume = <yes|no> This directive instructs the Director to search for the oldest used
Volume in the Pool when another Volume is requested by the Storage daemon and none are available.
The catalog is then pruned respecting the retention periods of all Files and Jobs written to this
Volume. If all Jobs are pruned (i.e. the volume is Purged), then the Volume is recycled and will be
used as the next Volume to be written. This directive respects any Job, File, or Volume retention
periods that you may have specified, and as such it is much better to use this directive than the Purge
Oldest Volume.

Bacula Version 5.0.3 167

This directive can be useful if you have a fixed number of Volumes in the Pool and you want to cycle
through them and you have specified the correct retention periods.

However, if you use this directive and have only one Volume in the Pool, you will immediately recycle
your Volume if you fill it and Bacula needs another one. Thus your backup will be totally invalid.
Please use this directive with care. The default is no.

Recycle Current Volume = <yes|no> If Bacula needs a new Volume, this directive instructs Bacula
to Prune the volume respecting the Job and File retention periods. If all Jobs are pruned (i.e. the
volume is Purged), then the Volume is recycled and will be used as the next Volume to be written.
This directive respects any Job, File, or Volume retention periods that you may have specified, and
thus it is much better to use it rather than the Purge Oldest Volume directive.

This directive can be useful if you have: a fixed number of Volumes in the Pool, you want to cycle
through them, and you have specified retention periods that prune Volumes before you have cycled
through the Volume in the Pool.

However, if you use this directive and have only one Volume in the Pool, you will immediately recycle
your Volume if you fill it and Bacula needs another one. Thus your backup will be totally invalid.
Please use this directive with care. The default is no.

Purge Oldest Volume = <yes|no> This directive instructs the Director to search for the oldest used
Volume in the Pool when another Volume is requested by the Storage daemon and none are available.
The catalog is then purged irrespective of retention periods of all Files and Jobs written to this
Volume. The Volume is then recycled and will be used as the next Volume to be written. This
directive overrides any Job, File, or Volume retention periods that you may have specified.

This directive can be useful if you have a fixed number of Volumes in the Pool and you want to cycle
through them and reusing the oldest one when all Volumes are full, but you don’t want to worry about
setting proper retention periods. However, by using this option you risk losing valuable data.

Please be aware that Purge Oldest Volume disregards all retention periods. If you have only a single
Volume defined and you turn this variable on, that Volume will always be immediately overwritten
when it fills! So at a minimum, ensure that you have a decent number of Volumes in your Pool before
running any jobs. If you want retention periods to apply do not use this directive. To specify a
retention period, use the Volume Retention directive (see above).

We highly recommend against using this directive, because it is sure that some day, Bacula will recycle
a Volume that contains current data. The default is no.

File Retention = <time-period-specification> The File Retention directive defines the length of time
that Bacula will keep File records in the Catalog database after the End time of the Job corresponding
to the File records.

This directive takes precedence over Client directives of the same name. For example, you can decide
to increase Retention times for Archive or OffSite Pool.

Note, this affects only records in the catalog database. It does not affect your archive backups.

For more information see Client documentation about FileRetention

Job Retention = <time-period-specification> The Job Retention directive defines the length of time
that Bacula will keep Job records in the Catalog database after the Job End time. As with the other
retention periods, this affects only records in the catalog and not data in your archive backup.

This directive takes precedence over Client directives of the same name. For example, you can decide
to increase Retention times for Archive or OffSite Pool.

For more information see Client side documentation JobRetention

Cleaning Prefix = <string> This directive defines a prefix string, which if it matches the beginning
of a Volume name during labeling of a Volume, the Volume will be defined with the VolStatus set
to Cleaning and thus Bacula will never attempt to use this tape. This is primarily for use with
autochangers that accept barcodes where the convention is that barcodes beginning with CLN are
treated as cleaning tapes.

Label Format = <format> This directive specifies the format of the labels contained in this pool. The
format directive is used as a sort of template to create new Volume names during automatic Volume
labeling.

168 Bacula Version 5.0.3

The format should be specified in double quotes, and consists of letters, numbers and the special
characters hyphen (-), underscore (), colon (:), and period (.), which are the legal characters for a
Volume name. The format should be enclosed in double quotes (”).

In addition, the format may contain a number of variable expansion characters which will be expanded
by a complex algorithm allowing you to create Volume names of many different formats. In all cases,
the expansion process must resolve to the set of characters noted above that are legal Volume names.
Generally, these variable expansion characters begin with a dollar sign ($) or a left bracket ([). If
you specify variable expansion characters, you should always enclose the format with double quote
characters (”). For more details on variable expansion, please see the Variable Expansion Chapter of
this manual.

If no variable expansion characters are found in the string, the Volume name will be formed from the
format string appended with the a unique number that increases. If you do not remove volumes from
the pool, this number should be the number of volumes plus one, but this is not guaranteed. The
unique number will be edited as four digits with leading zeros. For example, with a Label Format =
”File-”, the first volumes will be named File-0001, File-0002, ...

With the exception of Job specific variables, you can test your LabelFormat by using the
var command the Console Chapter of this manual.

In almost all cases, you should enclose the format specification (part after the equal sign) in double
quotes. Please note that this directive is deprecated and is replaced in version 1.37 and greater with a
Python script for creating volume names.

In order for a Pool to be used during a Backup Job, the Pool must have at least one Volume associated with
it. Volumes are created for a Pool using the label or the add commands in the Bacula Console, program.
In addition to adding Volumes to the Pool (i.e. putting the Volume names in the Catalog database), the
physical Volume must be labeled with a valid Bacula software volume label before Bacula will accept the
Volume. This will be automatically done if you use the label command. Bacula can automatically label
Volumes if instructed to do so, but this feature is not yet fully implemented.

The following is an example of a valid Pool resource definition:

Pool {

Name = Default

Pool Type = Backup

}

17.15.1 The Scratch Pool

In general, you can give your Pools any name you wish, but there is one important restriction: the Pool
named Scratch, if it exists behaves like a scratch pool of Volumes in that when Bacula needs a new Volume
for writing and it cannot find one, it will look in the Scratch pool, and if it finds an available Volume, it will
move it out of the Scratch pool into the Pool currently being used by the job.

17.16 The Catalog Resource

The Catalog Resource defines what catalog to use for the current job. Currently, Bacula can only handle a
single database server (SQLite, MySQL, PostgreSQL) that is defined when configuring Bacula. However,
there may be as many Catalogs (databases) defined as you wish. For example, you may want each Client to
have its own Catalog database, or you may want backup jobs to use one database and verify or restore jobs
to use another database.

Since SQLite is compiled in, it always runs on the same machine as the Director and the database must
be directly accessible (mounted) from the Director. However, since both MySQL and PostgreSQL are
networked databases, they may reside either on the same machine as the Director or on a different machine
on the network. See below for more details.

Bacula Version 5.0.3 169

Catalog Start of the Catalog resource. At least one Catalog resource must be defined.

Name = <name> The name of the Catalog. No necessary relation to the database server name. This
name will be specified in the Client resource directive indicating that all catalog data for that Client
is maintained in this Catalog. This directive is required.

password = <password> This specifies the password to use when logging into the database. This direc-
tive is required.

DB Name = <name> This specifies the name of the database. If you use multiple catalogs (databases),
you specify which one here. If you are using an external database server rather than the internal one,
you must specify a name that is known to the server (i.e. you explicitly created the Bacula tables using
this name. This directive is required.

user = <user> This specifies what user name to use to log into the database. This directive is required.

DB Socket = <socket-name> This is the name of a socket to use on the local host to connect to the
database. This directive is used only by MySQL and is ignored by SQLite. Normally, if neither DB
Socket or DB Address are specified, MySQL will use the default socket. If the DB Socket is specified,
the MySQL server must reside on the same machine as the Director.

DB Address = <address> This is the host address of the database server. Normally, you would specify
this instead of DB Socket if the database server is on another machine. In that case, you will also
specify DB Port. This directive is used only by MySQL and PostgreSQL and is ignored by SQLite if
provided. This directive is optional.

DB Port = <port> This defines the port to be used in conjunction with DB Address to access the
database if it is on another machine. This directive is used only by MySQL and PostgreSQL and is
ignored by SQLite if provided. This directive is optional.

the different

The following is an example of a valid Catalog resource definition:

Catalog

{

Name = SQLite

dbname = bacula;

user = bacula;

password = "" # no password = no security

}

or for a Catalog on another machine:

Catalog

{

Name = MySQL

dbname = bacula

user = bacula

password = ""

DB Address = remote.acme.com

DB Port = 1234

}

17.17 The Messages Resource

For the details of the Messages Resource, please see the Messages Resource Chapter of this manual.

170 Bacula Version 5.0.3

17.18 The Console Resource

As of Bacula version 1.33 and higher, there are three different kinds of consoles, which the administrator or
user can use to interact with the Director. These three kinds of consoles comprise three different security
levels.

• The first console type is an anonymous or default console, which has full privileges. There is no
console resource necessary for this type since the password is specified in the Director’s resource and
consequently such consoles do not have a name as defined on a Name = directive. This is the kind
of console that was initially implemented in versions prior to 1.33 and remains valid. Typically you
would use it only for administrators.

• The second type of console, and new to version 1.33 and higher is a ”named” console defined within a
Console resource in both the Director’s configuration file and in the Console’s configuration file. Both
the names and the passwords in these two entries must match much as is the case for Client programs.

This second type of console begins with absolutely no privileges except those explicitly specified in the
Director’s Console resource. Thus you can have multiple Consoles with different names and passwords,
sort of like multiple users, each with different privileges. As a default, these consoles can do absolutely
nothing – no commands whatsoever. You give them privileges or rather access to commands and
resources by specifying access control lists in the Director’s Console resource. The ACLs are specified
by a directive followed by a list of access names. Examples of this are shown below.

• The third type of console is similar to the above mentioned one in that it requires a Console resource
definition in both the Director and the Console. In addition, if the console name, provided on the
Name = directive, is the same as a Client name, that console is permitted to use the SetIP command
to change the Address directive in the Director’s client resource to the IP address of the Console. This
permits portables or other machines using DHCP (non-fixed IP addresses) to ”notify” the Director of
their current IP address.

The Console resource is optional and need not be specified. The following directives are permitted within
the Director’s configuration resource:

Name = <name> The name of the console. This name must match the name specified in the Console’s
configuration resource (much as is the case with Client definitions).

Password = <password> Specifies the password that must be supplied for a named Bacula Console to
be authorized. The same password must appear in the Console resource of the Console configura-
tion file. For added security, the password is never actually passed across the network but rather a
challenge response hash code created with the password. This directive is required. If you have either
/dev/random bc on your machine, Bacula will generate a random password during the configuration
process, otherwise it will be left blank.

The password is plain text. It is not generated through any special process. However, it is preferable
for security reasons to choose random text.

JobACL = <name-list> This directive is used to specify a list of Job resource names that can be accessed
by the console. Without this directive, the console cannot access any of the Director’s Job resources.
Multiple Job resource names may be specified by separating them with commas, and/or by specifying
multiple JobACL directives. For example, the directive may be specified as:

JobACL = kernsave, "Backup client 1", "Backup client 2"

JobACL = "RestoreFiles"

With the above specification, the console can access the Director’s resources for the four jobs named
on the JobACL directives, but for no others.

ClientACL = <name-list> This directive is used to specify a list of Client resource names that can be
accessed by the console.

Bacula Version 5.0.3 171

StorageACL = <name-list> This directive is used to specify a list of Storage resource names that can
be accessed by the console.

ScheduleACL = <name-list> This directive is used to specify a list of Schedule resource names that can
be accessed by the console.

PoolACL = <name-list> This directive is used to specify a list of Pool resource names that can be
accessed by the console.

FileSetACL = <name-list> This directive is used to specify a list of FileSet resource names that can be
accessed by the console.

CatalogACL = <name-list> This directive is used to specify a list of Catalog resource names that can
be accessed by the console.

CommandACL = <name-list> This directive is used to specify a list of of console commands that can
be executed by the console.

WhereACL = <string> This directive permits you to specify where a restricted console can restore files.
If this directive is not specified, only the default restore location is permitted (normally /tmp/bacula-
restores. If *all* is specified any path the user enters will be accepted (not very secure), any other
value specified (there may be multiple WhereACL directives) will restrict the user to use that path.
For example, on a Unix system, if you specify ”/”, the file will be restored to the original location.
This directive is untested.

Aside from Director resource names and console command names, the special keyword *all* can be specified
in any of the above access control lists. When this keyword is present, any resource or command name (which
ever is appropriate) will be accepted. For an example configuration file, please see the Console Configuration
chapter of this manual.

17.19 The Counter Resource

The Counter Resource defines a counter variable that can be accessed by variable expansion used for creating
Volume labels with the LabelFormat directive. See the LabelFormat directive in this chapter for more
details.

Counter Start of the Counter resource. Counter directives are optional.

Name = <name> The name of the Counter. This is the name you will use in the variable expansion to
reference the counter value.

Minimum = <integer> This specifies the minimum value that the counter can have. It also becomes the
default. If not supplied, zero is assumed.

Maximum = <integer> This is the maximum value value that the counter can have. If not specified or
set to zero, the counter can have a maximum value of 2,147,483,648 (2 to the 31 power). When the
counter is incremented past this value, it is reset to the Minimum.

*WrapCounter = <counter-name> If this value is specified, when the counter is incremented past the
maximum and thus reset to the minimum, the counter specified on the WrapCounter is incremented.
(This is not currently implemented).

Catalog = <catalog-name> If this directive is specified, the counter and its values will be saved in the
specified catalog. If this directive is not present, the counter will be redefined each time that Bacula
is started.

172 Bacula Version 5.0.3

17.20 Example Director Configuration File

An example Director configuration file might be the following:

#

Default Bacula Director Configuration file

#

The only thing that MUST be changed is to add one or more

file or directory names in the Include directive of the

FileSet resource.

#

For Bacula release 1.15 (5 March 2002) -- redhat

#

You might also want to change the default email address

from root to your address. See the "mail" and "operator"

directives in the Messages resource.

#

Director { # define myself

Name = rufus-dir

QueryFile = "/home/kern/bacula/bin/query.sql"

WorkingDirectory = "/home/kern/bacula/bin/working"

PidDirectory = "/home/kern/bacula/bin/working"

Password = "XkSfzu/Cf/wX4L8Zh4G4/yhCbpLcz3YVdmVoQvU3EyF/"

}

Define the backup Job

Job {

Name = "NightlySave"

Type = Backup

Level = Incremental # default

Client=rufus-fd

FileSet="Full Set"

Schedule = "WeeklyCycle"

Storage = DLTDrive

Messages = Standard

Pool = Default

}

Job {

Name = "Restore"

Type = Restore

Client=rufus-fd

FileSet="Full Set"

Where = /tmp/bacula-restores

Storage = DLTDrive

Messages = Standard

Pool = Default

}

List of files to be backed up

FileSet {

Name = "Full Set"

Include {

Options { signature=SHA1}

#

Put your list of files here, one per line or include an

external list with:

#

@file-name

#

Note: / backs up everything

File = /

}

Exclude {}

}

When to do the backups

Schedule {

Name = "WeeklyCycle"

Run = level=Full sun at 2:05

Run = level=Incremental mon-sat at 2:05

}

Client (File Services) to backup

Client {

Name = rufus-fd

Address = rufus

Catalog = MyCatalog

Bacula Version 5.0.3 173

Password = "MQk6lVinz4GG2hdIZk1dsKE/LxMZGo6znMHiD7t7vzF+"

File Retention = 60d # sixty day file retention

Job Retention = 1y # 1 year Job retention

AutoPrune = yes # Auto apply retention periods

}

Definition of DLT tape storage device

Storage {

Name = DLTDrive

Address = rufus

Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"

Device = "HP DLT 80" # same as Device in Storage daemon

Media Type = DLT8000 # same as MediaType in Storage daemon

}

Definition for a DLT autochanger device

Storage {

Name = Autochanger

Address = rufus

Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"

Device = "Autochanger" # same as Device in Storage daemon

Media Type = DLT-8000 # Different from DLTDrive

Autochanger = yes

}

Definition of DDS tape storage device

Storage {

Name = SDT-10000

Address = rufus

Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"

Device = SDT-10000 # same as Device in Storage daemon

Media Type = DDS-4 # same as MediaType in Storage daemon

}

Definition of 8mm tape storage device

Storage {

Name = "8mmDrive"

Address = rufus

Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"

Device = "Exabyte 8mm"

MediaType = "8mm"

}

Definition of file storage device

Storage {

Name = File

Address = rufus

Password = "jMeWZvfikUHvt3kzKVVPpQ0ccmV6emPnF2cPYFdhLApQ"

Device = FileStorage

Media Type = File

}

Generic catalog service

Catalog {

Name = MyCatalog

dbname = bacula; user = bacula; password = ""

}

Reasonable message delivery -- send most everything to

the email address and to the console

Messages {

Name = Standard

mail = root@localhost = all, !skipped, !terminate

operator = root@localhost = mount

console = all, !skipped, !saved

}

Default pool definition

Pool {

Name = Default

Pool Type = Backup

AutoPrune = yes

Recycle = yes

}

#

Restricted console used by tray-monitor to get the status of the director

#

Console {

Name = Monitor

Password = "GN0uRo7PTUmlMbqrJ2Gr1p0fk0HQJTxwnFyE4WSST3MWZseR"

CommandACL = status, .status

}

174 Bacula Version 5.0.3

Chapter 18

Client/File daemon Configuration

The Client (or File Daemon) Configuration is one of the simpler ones to specify. Generally, other than
changing the Client name so that error messages are easily identified, you will not need to modify the default
Client configuration file.

For a general discussion of configuration file and resources including the data types recognized by Bacula,
please see the Configuration chapter of this manual. The following Client Resource definitions must be
defined:

• Client – to define what Clients are to be backed up.

• Director – to define the Director’s name and its access password.

• Messages – to define where error and information messages are to be sent.

18.1 The Client Resource

The Client Resource (or FileDaemon) resource defines the name of the Client (as used by the Director) as
well as the port on which the Client listens for Director connections.

Client (or FileDaemon) Start of the Client records. There must be one and only one Client resource in
the configuration file, since it defines the properties of the current client program.

Name = <name> The client name that must be used by the Director when connecting. Generally, it is a
good idea to use a name related to the machine so that error messages can be easily identified if you
have multiple Clients. This directive is required.

Working Directory = <Directory> This directive is mandatory and specifies a directory in which the
File daemon may put its status files. This directory should be used only by Bacula, but may be
shared by other Bacula daemons provided the daemon names on the Name definition are unique for
each daemon. This directive is required.

On Win32 systems, in some circumstances you may need to specify a drive letter in the specified
working directory path. Also, please be sure that this directory is writable by the SYSTEM user
otherwise restores may fail (the bootstrap file that is transferred to the File daemon from the Director
is temporarily put in this directory before being passed to the Storage daemon).

Pid Directory = <Directory> This directive is mandatory and specifies a directory in which the Director
may put its process Id file files. The process Id file is used to shutdown Bacula and to prevent multiple
copies of Bacula from running simultaneously. This record is required. Standard shell expansion of the
Directory is done when the configuration file is read so that values such as $HOME will be properly
expanded.

Typically on Linux systems, you will set this to: /var/run. If you are not installing Bacula in the
system directories, you can use the Working Directory as defined above.

175

176 Bacula Version 5.0.3

Heartbeat Interval = <time-interval> This record defines an interval of time in seconds. For each
heartbeat that the File daemon receives from the Storage daemon, it will forward it to the Director.
In addition, if no heartbeat has been received from the Storage daemon and thus forwarded the File
daemon will send a heartbeat signal to the Director and to the Storage daemon to keep the channels
active. The default interval is zero which disables the heartbeat. This feature is particularly useful
if you have a router such as 3Com that does not follow Internet standards and times out a valid
connection after a short duration despite the fact that keepalive is set. This usually results in a broken
pipe error message.

If you continue getting broken pipe error messages despite using the Heartbeat Interval, and you are
using Windows, you should consider upgrading your ethernet driver. This is a known problem with
NVidia NForce 3 drivers (4.4.2 17/05/2004), or try the following workaround suggested by Thomas
Simmons for Win32 machines:

Browse to: Start > Control Panel > Network Connections

Right click the connection for the nvidia adapter and select properties. Under the General tab, click
”Configure...”. Under the Advanced tab set ”Checksum Offload” to disabled and click OK to save the
change.

Lack of communications, or communications that get interrupted can also be caused by Linux firewalls
where you have a rule that throttles connections or traffic.

Maximum Concurrent Jobs = <number> where <number> is the maximum number of Jobs that
should run concurrently. The default is set to 2, but you may set it to a larger number. Each contact
from the Director (e.g. status request, job start request) is considered as a Job, so if you want to be
able to do a status request in the console at the same time as a Job is running, you will need to set
this value greater than 1.

FDAddresses = <IP-address-specification> Specify the ports and addresses on which the File daemon
listens for Director connections. Probably the simplest way to explain is to show an example:

FDAddresses = {

ip = { addr = 1.2.3.4; port = 1205; }

ipv4 = {

addr = 1.2.3.4; port = http; }

ipv6 = {

addr = 1.2.3.4;

port = 1205;

}

ip = {

addr = 1.2.3.4

port = 1205

}

ip = { addr = 1.2.3.4 }

ip = {

addr = 201:220:222::2

}

ip = {

addr = bluedot.thun.net

}

}

where ip, ip4, ip6, addr, and port are all keywords. Note, that the address can be specified as either a
dotted quadruple, or IPv6 colon notation, or as a symbolic name (only in the ip specification). Also,
port can be specified as a number or as the mnemonic value from the /etc/services file. If a port is not
specified, the default will be used. If an ip section is specified, the resolution can be made either by
IPv4 or IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted, and likewise with ip6.

FDPort = <port-number> This specifies the port number on which the Client listens for Director con-
nections. It must agree with the FDPort specified in the Client resource of the Director’s configuration
file. The default is 9102.

FDAddress = <IP-Address> This record is optional, and if it is specified, it will cause the File daemon
server (for Director connections) to bind to the specified IP-Address, which is either a domain name
or an IP address specified as a dotted quadruple. If this record is not specified, the File daemon will
bind to any available address (the default).

Bacula Version 5.0.3 177

FDSourceAddress = <IP-Address> This record is optional, and if it is specified, it will cause the File
daemon server (for Storage connections) to bind to the specified IP-Address, which is either a domain
name or an IP address specified as a dotted quadruple. If this record is not specified, the kernel will
choose the best address according to the routing table (the default).

SDConnectTimeout = <time-interval> This record defines an interval of time that the File daemon
will try to connect to the Storage daemon. The default is 30 minutes. If no connection is made in the
specified time interval, the File daemon cancels the Job.

Maximum Network Buffer Size = <bytes> where <bytes> specifies the initial network buffer size to
use with the File daemon. This size will be adjusted down if it is too large until it is accepted by the
OS. Please use care in setting this value since if it is too large, it will be trimmed by 512 bytes until
the OS is happy, which may require a large number of system calls. The default value is 65,536 bytes.

Note, on certain Windows machines, there are reports that the transfer rates are very slow and this
seems to be related to the default 65,536 size. On systems where the transfer rates seem abnormally
slow compared to other systems, you might try setting the Maximum Network Buffer Size to 32,768 in
both the File daemon and in the Storage daemon.

Heartbeat Interval = <time-interval> This directive is optional and if specified will cause the File
daemon to set a keepalive interval (heartbeat) in seconds on each of the sockets to communicate with
the Storage daemon. It is implemented only on systems (Linux, ...) that provide the setsockopt
TCP KEEPIDLE function. The default value is zero, which means no change is made to the socket.

PKI Encryption See the Data Encryption chapter of this manual.

PKI Signatures See the Data Encryption chapter of this manual.

PKI Keypair See the Data Encryption chapter of this manual.

PKI Master Key See the Data Encryption chapter of this manual.

The following is an example of a valid Client resource definition:

Client { # this is me

Name = rufus-fd

WorkingDirectory = $HOME/bacula/bin/working

Pid Directory = $HOME/bacula/bin/working

}

18.2 The Director Resource

The Director resource defines the name and password of the Directors that are permitted to contact this
Client.

Director Start of the Director records. There may be any number of Director resources in the Client
configuration file. Each one specifies a Director that is allowed to connect to this Client.

Name = <name> The name of the Director that may contact this Client. This name must be the same
as the name specified on the Director resource in the Director’s configuration file. Note, the case
(upper/lower) of the characters in the name are significant (i.e. S is not the same as s). This directive
is required.

Password = <password> Specifies the password that must be supplied for a Director to be authorized.
This password must be the same as the password specified in the Client resource in the Director’s
configuration file. This directive is required.

Monitor = <yes|no> If Monitor is set to no (default), this director will have full access to this Client. If
Monitor is set to yes, this director will only be able to fetch the current status of this Client.

Please note that if this director is being used by a Monitor, we highly recommend to set this directive
to yes to avoid serious security problems.

178 Bacula Version 5.0.3

Thus multiple Directors may be authorized to use this Client’s services. Each Director will have a different
name, and normally a different password as well.

The following is an example of a valid Director resource definition:

#

List Directors who are permitted to contact the File daemon

#

Director {

Name = HeadMan

Password = very_good # password HeadMan must supply

}

Director {

Name = Worker

Password = not_as_good

Monitor = Yes

}

18.3 The Message Resource

Please see the Messages Resource Chapter of this manual for the details of the Messages Resource.

There must be at least one Message resource in the Client configuration file.

18.4 Example Client Configuration File

An example File Daemon configuration file might be the following:

#

Default Bacula File Daemon Configuration file

#

For Bacula release 1.35.2 (16 August 2004) -- gentoo 1.4.16

#

There is not much to change here except perhaps to

set the Director’s name and File daemon’s name

to something more appropriate for your site.

#

#

List Directors who are permitted to contact this File daemon

#

Director {

Name = rufus-dir

Password = "/LqPRkX++saVyQE7w7mmiFg/qxYc1kufww6FEyY/47jU"

}

#

Restricted Director, used by tray-monitor to get the

status of the file daemon

#

Director {

Name = rufus-mon

Password = "FYpq4yyI1y562EMS35bA0J0QC0M2L3t5cZObxT3XQxgxppTn"

Monitor = yes

}

#

"Global" File daemon configuration specifications

#

FileDaemon { # this is me

Name = rufus-fd

WorkingDirectory = $HOME/bacula/bin/working

Pid Directory = $HOME/bacula/bin/working

}

Send all messages except skipped files back to Director

Messages {

Name = Standard

director = rufus-dir = all, !skipped

}

Chapter 19

Storage Daemon Configuration

The Storage Daemon configuration file has relatively few resource definitions. However, due to the great
variation in backup media and system capabilities, the storage daemon must be highly configurable. As a
consequence, there are quite a large number of directives in the Device Resource definition that allow you
to define all the characteristics of your Storage device (normally a tape drive). Fortunately, with modern
storage devices, the defaults are sufficient, and very few directives are actually needed.

Examples of Device resource directives that are known to work for a number of common tape drives can
be found in the <bacula-src>/examples/devices directory, and most will also be listed here.

For a general discussion of configuration file and resources including the data types recognized by Bacula,
please see the Configuration chapter of this manual. The following Storage Resource definitions must be
defined:

• Storage – to define the name of the Storage daemon.

• Director – to define the Director’s name and his access password.

• Device – to define the characteristics of your storage device (tape drive).

• Messages – to define where error and information messages are to be sent.

19.1 Storage Resource

In general, the properties specified under the Storage resource define global properties of the Storage daemon.
Each Storage daemon configuration file must have one and only one Storage resource definition.

Name = <Storage-Daemon-Name> Specifies the Name of the Storage daemon. This directive is re-
quired.

Working Directory = <Directory> This directive is mandatory and specifies a directory in which the
Storage daemon may put its status files. This directory should be used only by Bacula, but may be
shared by other Bacula daemons provided the names given to each daemon are unique. This directive
is required

Pid Directory = <Directory> This directive is mandatory and specifies a directory in which the Director
may put its process Id file files. The process Id file is used to shutdown Bacula and to prevent multiple
copies of Bacula from running simultaneously. This directive is required. Standard shell expansion
of the Directory is done when the configuration file is read so that values such as $HOME will be
properly expanded.

Typically on Linux systems, you will set this to: /var/run. If you are not installing Bacula in the
system directories, you can use the Working Directory as defined above.

179

180 Bacula Version 5.0.3

Heartbeat Interval = <time-interval> This directive defines an interval of time in seconds. When the
Storage daemon is waiting for the operator to mount a tape, each time interval, it will send a heartbeat
signal to the File daemon. The default interval is zero which disables the heartbeat. This feature is
particularly useful if you have a router such as 3Com that does not follow Internet standards and times
out an valid connection after a short duration despite the fact that keepalive is set. This usually results
in a broken pipe error message.

Client Connect Wait = <time-interval> This directive defines an interval of time in seconds that the
Storage daemon will wait for a Client (the File daemon) to connect. The default is 30 minutes. Be
aware that the longer the Storage daemon waits for a Client, the more resources will be tied up.

Maximum Concurrent Jobs = <number> where <number> is the maximum number of Jobs that
may run concurrently. The default is set to 10, but you may set it to a larger number. Each contact
from the Director (e.g. status request, job start request) is considered as a Job, so if you want to
be able to do a status request in the console at the same time as a Job is running, you will need
to set this value greater than 1. To run simultaneous Jobs, you will need to set a number of other
directives in the Director’s configuration file. Which ones you set depend on what you want, but you
will almost certainly need to set the Maximum Concurrent Jobs in the Storage resource in the
Director’s configuration file and possibly those in the Job and Client resources.

SDAddresses = <IP-address-specification> Specify the ports and addresses on which the Storage dae-
mon will listen for Director connections. Normally, the default is sufficient and you do not need to
specify this directive. Probably the simplest way to explain how this directive works is to show an
example:

SDAddresses = { ip = {

addr = 1.2.3.4; port = 1205; }

ipv4 = {

addr = 1.2.3.4; port = http; }

ipv6 = {

addr = 1.2.3.4;

port = 1205;

}

ip = {

addr = 1.2.3.4

port = 1205

}

ip = {

addr = 1.2.3.4

}

ip = {

addr = 201:220:222::2

}

ip = {

addr = bluedot.thun.net

}

}

where ip, ip4, ip6, addr, and port are all keywords. Note, that the address can be specified as either a
dotted quadruple, or IPv6 colon notation, or as a symbolic name (only in the ip specification). Also,
port can be specified as a number or as the mnemonic value from the /etc/services file. If a port is not
specified, the default will be used. If an ip section is specified, the resolution can be made either by
IPv4 or IPv6. If ip4 is specified, then only IPv4 resolutions will be permitted, and likewise with ip6.

Using this directive, you can replace both the SDPort and SDAddress directives shown below.

SDPort = <port-number> Specifies port number on which the Storage daemon listens for Director con-
nections. The default is 9103.

SDAddress = <IP-Address> This directive is optional, and if it is specified, it will cause the Storage
daemon server (for Director and File daemon connections) to bind to the specified IP-Address, which
is either a domain name or an IP address specified as a dotted quadruple. If this directive is not
specified, the Storage daemon will bind to any available address (the default).

The following is a typical Storage daemon Storage definition.

Bacula Version 5.0.3 181

#

"Global" Storage daemon configuration specifications appear

under the Storage resource.

#

Storage {

Name = "Storage daemon"

Address = localhost

WorkingDirectory = "~/bacula/working"

Pid Directory = "~/bacula/working"

}

19.2 Director Resource

The Director resource specifies the Name of the Director which is permitted to use the services of the
Storage daemon. There may be multiple Director resources. The Director Name and Password must match
the corresponding values in the Director’s configuration file.

Name = <Director-Name> Specifies the Name of the Director allowed to connect to the Storage daemon.
This directive is required.

Password = <Director-password> Specifies the password that must be supplied by the above named
Director. This directive is required.

Monitor = <yes|no> If Monitor is set to no (default), this director will have full access to this Storage
daemon. If Monitor is set to yes, this director will only be able to fetch the current status of this
Storage daemon.

Please note that if this director is being used by a Monitor, we highly recommend to set this directive
to yes to avoid serious security problems.

The following is an example of a valid Director resource definition:

Director {

Name = MainDirector

Password = my_secret_password

}

19.3 Device Resource

The Device Resource specifies the details of each device (normally a tape drive) that can be used by the
Storage daemon. There may be multiple Device resources for a single Storage daemon. In general, the
properties specified within the Device resource are specific to the Device.

Name = Device-Name Specifies the Name that the Director will use when asking to backup or restore to
or from to this device. This is the logical Device name, and may be any string up to 127 characters
in length. It is generally a good idea to make it correspond to the English name of the backup device.
The physical name of the device is specified on the Archive Device directive described below. The
name you specify here is also used in your Director’s conf file on the Device directive in its Storage
resource.

Archive Device = name-string The specified name-string gives the system file name of the storage device
managed by this storage daemon. This will usually be the device file name of a removable storage
device (tape drive), for example ”/dev/nst0” or ”/dev/rmt/0mbn”. For a DVD-writer, it will be
for example /dev/hdc. It may also be a directory name if you are archiving to disk storage. In this
case, you must supply the full absolute path to the directory. When specifying a tape device, it is
preferable that the ”non-rewind” variant of the device file name be given. In addition, on systems
such as Sun, which have multiple tape access methods, you must be sure to specify to use Berkeley

182 Bacula Version 5.0.3

I/O conventions with the device. The b in the Solaris (Sun) archive specification /dev/rmt/0mbn
is what is needed in this case. Bacula does not support SysV tape drive behavior.

As noted above, normally the Archive Device is the name of a tape drive, but you may also specify an
absolute path to an existing directory. If the Device is a directory Bacula will write to file storage in
the specified directory, and the filename used will be the Volume name as specified in the Catalog. If
you want to write into more than one directory (i.e. to spread the load to different disk drives), you
will need to define two Device resources, each containing an Archive Device with a different directory.
In addition to a tape device name or a directory name, Bacula will accept the name of a FIFO. A FIFO
is a special kind of file that connects two programs via kernel memory. If a FIFO device is specified for
a backup operation, you must have a program that reads what Bacula writes into the FIFO. When the
Storage daemon starts the job, it will wait for MaximumOpenWait seconds for the read program
to start reading, and then time it out and terminate the job. As a consequence, it is best to start the
read program at the beginning of the job perhaps with the RunBeforeJob directive. For this kind of
device, you never want to specify AlwaysOpen, because you want the Storage daemon to open it only
when a job starts, so you must explicitly set it to No. Since a FIFO is a one way device, Bacula will
not attempt to read a label of a FIFO device, but will simply write on it. To create a FIFO Volume
in the catalog, use the add command rather than the label command to avoid attempting to write a
label.

Device {

Name = FifoStorage

Media Type = Fifo

Device Type = Fifo

Archive Device = /tmp/fifo

LabelMedia = yes

Random Access = no

AutomaticMount = no

RemovableMedia = no

MaximumOpenWait = 60

AlwaysOpen = no

}

During a restore operation, if the Archive Device is a FIFO, Bacula will attempt to read from the
FIFO, so you must have an external program that writes into the FIFO. Bacula will wait Maximu-
mOpenWait seconds for the program to begin writing and will then time it out and terminate the
job. As noted above, you may use the RunBeforeJob to start the writer program at the beginning
of the job.

The Archive Device directive is required.

Device Type = type-specification The Device Type specification allows you to explicitly tell Bacula what
kind of device you are defining. It the type-specification may be one of the following:

File Tells Bacula that the device is a file. It may either be a file defined on fixed medium or a removable
filesystem such as USB. All files must be random access devices.

Tape The device is a tape device and thus is sequential access. Tape devices are controlled using
ioctl() calls.

Fifo The device is a first-in-first out sequential access read-only or write-only device.

DVD The device is a DVD. DVDs are sequential access for writing, but random access for reading.

The Device Type directive is not required, and if not specified, Bacula will attempt to guess what
kind of device has been specified using the Archive Device specification supplied. There are several
advantages to explicitly specifying the Device Type. First, on some systems, block and character
devices have the same type, which means that on those systems, Bacula is unlikely to be able to
correctly guess that a device is a DVD. Secondly, if you explicitly specify the Device Type, the mount
point need not be defined until the device is opened. This is the case with most removable devices such
as USB that are mounted by the HAL daemon. If the Device Type is not explicitly specified, then the
mount point must exist when the Storage daemon starts.

This directive was implemented in Bacula version 1.38.6.

Media Type = name-string The specified name-string names the type of media supported by this device,
for example, ”DLT7000”. Media type names are arbitrary in that you set them to anything you want,
but they must be known to the volume database to keep track of which storage daemons can read

Bacula Version 5.0.3 183

which volumes. In general, each different storage type should have a unique Media Type associated
with it. The same name-string must appear in the appropriate Storage resource definition in the
Director’s configuration file.

Even though the names you assign are arbitrary (i.e. you choose the name you want), you should take
care in specifying them because the Media Type is used to determine which storage device Bacula will
select during restore. Thus you should probably use the same Media Type specification for all drives
where the Media can be freely interchanged. This is not generally an issue if you have a single Storage
daemon, but it is with multiple Storage daemons, especially if they have incompatible media.

For example, if you specify a Media Type of ”DDS-4” then during the restore, Bacula will be able to
choose any Storage Daemon that handles ”DDS-4”. If you have an autochanger, you might want to
name the Media Type in a way that is unique to the autochanger, unless you wish to possibly use the
Volumes in other drives. You should also ensure to have unique Media Type names if the Media is not
compatible between drives. This specification is required for all devices.

In addition, if you are using disk storage, each Device resource will generally have a different mount
point or directory. In order for Bacula to select the correct Device resource, each one must have a
unique Media Type.

Autochanger = yes|no If Yes, this device belongs to an automatic tape changer, and you must specify
an Autochanger resource that points to the Device resources. You must also specify a Changer
Device. If the Autochanger directive is set to No (default), the volume must be manually changed.
You should also have an identical directive to the Storage resource in the Director’s configuration file
so that when labeling tapes you are prompted for the slot.

Changer Device = name-string The specified name-string must be the generic SCSI device name of
the autochanger that corresponds to the normal read/write Archive Device specified in the Device
resource. This generic SCSI device name should be specified if you have an autochanger or if you have
a standard tape drive and want to use the Alert Command (see below). For example, on Linux
systems, for an Archive Device name of /dev/nst0, you would specify /dev/sg0 for the Changer
Device name. Depending on your exact configuration, and the number of autochangers or the type of
autochanger, what you specify here can vary. This directive is optional. See the Using Autochangers
chapter of this manual for more details of using this and the following autochanger directives.

Changer Command = name-string The name-string specifies an external program to be called that will
automatically change volumes as required by Bacula. Normally, this directive will be specified only
in the AutoChanger resource, which is then used for all devices. However, you may also specify the
different Changer Command in each Device resource. Most frequently, you will specify the Bacula
supplied mtx-changer script as follows:

Changer Command = "/path/mtx-changer %c %o %S %a %d"

and you will install the mtx on your system (found in the depkgs release). An example of this
command is in the default bacula-sd.conf file. For more details on the substitution characters that may
be specified to configure your autochanger please see the Autochangers chapter of this manual. For
FreeBSD users, you might want to see one of the several chio scripts in examples/autochangers.

Alert Command = name-string The name-string specifies an external program to be called at the com-
pletion of each Job after the device is released. The purpose of this command is to check for Tape
Alerts, which are present when something is wrong with your tape drive (at least for most modern
tape drives). The same substitution characters that may be specified in the Changer Command may
also be used in this string. For more information, please see the Autochangers chapter of this manual.

Note, it is not necessary to have an autochanger to use this command. The example below uses the
tapeinfo program that comes with the mtx package, but it can be used on any tape drive. However,
you will need to specify a Changer Device directive in your Device resource (see above) so that the
generic SCSI device name can be edited into the command (with the %c).

An example of the use of this command to print Tape Alerts in the Job report is:

Alert Command = "sh -c ’tapeinfo -f %c | grep TapeAlert’"

and an example output when there is a problem could be:

184 Bacula Version 5.0.3

bacula-sd Alert: TapeAlert[32]: Interface: Problem with SCSI interface

between tape drive and initiator.

Drive Index = number The Drive Index that you specify is passed to the mtx-changer script and is
thus passed to the mtx program. By default, the Drive Index is zero, so if you have only one drive
in your autochanger, everything will work normally. However, if you have multiple drives, you must
specify multiple Bacula Device resources (one for each drive). The first Device should have the Drive
Index set to 0, and the second Device Resource should contain a Drive Index set to 1, and so on. This
will then permit you to use two or more drives in your autochanger. As of Bacula version 1.38.0, using
the Autochanger resource, Bacula will automatically ensure that only one drive at a time uses the
autochanger script, so you no longer need locking scripts as in the past – the default mtx-changer script
works for any number of drives.

Autoselect = yes|no If this directive is set to yes (default), and the Device belongs to an autochanger,
then when the Autochanger is referenced by the Director, this device can automatically be selected. If
this directive is set to no, then the Device can only be referenced by directly using the Device name in
the Director. This is useful for reserving a drive for something special such as a high priority backup
or restore operations.

Maximum Concurrent Jobs = num Maximum Concurrent Jobs is a directive that permits setting
the maximum number of Jobs that can run concurrently on a specified Device. Using this directive, it
is possible to have different Jobs using multiple drives, because when the Maximum Concurrent Jobs
limit is reached, the Storage Daemon will start new Jobs on any other available compatible drive. This
facilitates writing to multiple drives with multiple Jobs that all use the same Pool.

Maximum Changer Wait = time This directive specifies the maximum time in seconds for Bacula to
wait for an autochanger to change the volume. If this time is exceeded, Bacula will invalidate the
Volume slot number stored in the catalog and try again. If no additional changer volumes exist,
Bacula will ask the operator to intervene. The default is 5 minutes.

Maximum Rewind Wait = time This directive specifies the maximum time in seconds for Bacula to wait
for a rewind before timing out. If this time is exceeded, Bacula will cancel the job. The default is 5
minutes.

Maximum Open Wait = time This directive specifies the maximum time in seconds for Bacula to wait
for a open before timing out. If this time is exceeded, Bacula will cancel the job. The default is 5
minutes.

Always Open = yes|no If Yes (default), Bacula will always keep the device open unless specifically un-
mounted by the Console program. This permits Bacula to ensure that the tape drive is always
available, and properly positioned. If you set AlwaysOpen to no Bacula will only open the drive
when necessary, and at the end of the Job if no other Jobs are using the drive, it will be freed. The
next time Bacula wants to append to a tape on a drive that was freed, Bacula will rewind the tape and
position it to the end. To avoid unnecessary tape positioning and to minimize unnecessary operator
intervention, it is highly recommended that Always Open = yes. This also ensures that the drive is
available when Bacula needs it.

If you have Always Open = yes (recommended) and you want to use the drive for something else,
simply use the unmount command in the Console program to release the drive. However, don’t forget
to remount the drive with mount when the drive is available or the next Bacula job will block.

For File storage, this directive is ignored. For a FIFO storage device, you must set this to No.

Please note that if you set this directive to No Bacula will release the tape drive between each job, and
thus the next job will rewind the tape and position it to the end of the data. This can be a very time
consuming operation. In addition, with this directive set to no, certain multiple drive autochanger
operations will fail. We strongly recommend to keep Always Open set to Yes

Volume Poll Interval = time If the time specified on this directive is non-zero, after asking the operator
to mount a new volume Bacula will periodically poll (or read) the drive at the specified interval to
see if a new volume has been mounted. If the time interval is zero (the default), no polling will occur.
This directive can be useful if you want to avoid operator intervention via the console. Instead, the
operator can simply remove the old volume and insert the requested one, and Bacula on the next poll
will recognize the new tape and continue. Please be aware that if you set this interval too small, you

Bacula Version 5.0.3 185

may excessively wear your tape drive if the old tape remains in the drive, since Bacula will read it on
each poll. This can be avoided by ejecting the tape using the Offline On Unmount and the Close
on Poll directives. However, if you are using a Linux 2.6 kernel or other OSes such as FreeBSD or
Solaris, the Offline On Unmount will leave the drive with no tape, and Bacula will not be able to
properly open the drive and may fail the job. For more information on this problem, please see the
description of Offline On Unmount in the Tape Testing chapter.

Close on Poll= yes|no If Yes, Bacula close the device (equivalent to an unmount except no mount is
required) and reopen it at each poll. Normally this is not too useful unless you have the Offline on
Unmount directive set, in which case the drive will be taken offline preventing wear on the tape during
any future polling. Once the operator inserts a new tape, Bacula will recognize the drive on the next
poll and automatically continue with the backup. Please see above more more details.

Maximum Open Wait = time This directive specifies the maximum amount of time in seconds that
Bacula will wait for a device that is busy. The default is 5 minutes. If the device cannot be obtained,
the current Job will be terminated in error. Bacula will re-attempt to open the drive the next time a
Job starts that needs the the drive.

Removable media = yes|no If Yes, this device supports removable media (for example, tapes or CDs).
If No, media cannot be removed (for example, an intermediate backup area on a hard disk). If
Removable media is enabled on a File device (as opposed to a tape) the Storage daemon will assume
that device may be something like a USB device that can be removed or a simply a removable harddisk.
When attempting to open such a device, if the Volume is not found (for File devices, the Volume name
is the same as the Filename), then the Storage daemon will search the entire device looking for likely
Volume names, and for each one found, it will ask the Director if the Volume can be used. If so, the
Storage daemon will use the first such Volume found. Thus it acts somewhat like a tape drive – if the
correct Volume is not found, it looks at what actually is found, and if it is an appendable Volume, it
will use it.

If the removable medium is not automatically mounted (e.g. udev), then you might consider us-
ing additional Storage daemon device directives such as Requires Mount, Mount Point, Mount
Command, and Unmount Command, all of which can be used in conjunction with Removable
Media.

Random access = yes|no If Yes, the archive device is assumed to be a random access medium which
supports the lseek (or lseek64 if Largefile is enabled during configuration) facility. This should be set
to Yes for all file systems such as DVD, USB, and fixed files. It should be set to No for non-random
access devices such as tapes and named pipes.

Requires Mount = yes|no When this directive is enabled, the Storage daemon will submit a Mount
Command before attempting to open the device. You must set this directive to yes for DVD-writers
and removable file systems such as USB devices that are not automatically mounted by the operating
system when plugged in or opened by Bacula. It should be set to no for all other devices such as
tapes and fixed filesystems. It should also be set to no for any removable device that is automatically
mounted by the operating system when opened (e.g. USB devices mounted by udev or hotplug). This
directive indicates if the device requires to be mounted using the Mount Command. To be able
to write a DVD, the following directives must also be defined: Mount Point, Mount Command,
Unmount Command and Write Part Command.

Mount Point = directory Directory where the device can be mounted. This directive is used only for
devices that have Requires Mount enabled such as DVD or USB file devices.

Mount Command = name-string This directive specifies the command that must be executed to mount
devices such as DVDs and many USB devices. For DVDs, the device is written directly, but the mount
command is necessary in order to determine the free space left on the DVD. Before the command is
executed, %a is replaced with the Archive Device, and %m with the Mount Point.

Most frequently, for a DVD, you will define it as follows:

Mount Command = "/bin/mount -t iso9660 -o ro %a %m"

However, if you have defined a mount point in /etc/fstab, you might be able to use a mount command
such as:

186 Bacula Version 5.0.3

Mount Command = "/bin/mount /media/dvd"

See the Edit Codes section below for more details of the editing codes that can be used in this directive.

If you need to specify multiple commands, create a shell script.

Unmount Command = name-string This directive specifies the command that must be executed to un-
mount devices such as DVDs and many USB devices. Before the command is executed, %a is replaced
with the Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Unmount Command = "/bin/umount %m"

See the Edit Codes section below for more details of the editing codes that can be used in this directive.

If you need to specify multiple commands, create a shell script.

Block Checksum = yes/no You may turn off the Block Checksum (CRC32) code that Bacula uses when
writing blocks to a Volume. Doing so can reduce the Storage daemon CPU usage slightly. It will also
permit Bacula to read a Volume that has corrupted data.

The default is yes – i.e. the checksum is computed on write and checked on read.

We do not recommend to turn this off particularly on older tape drives or for disk Volumes where
doing so may allow corrupted data to go undetected.

Minimum block size = size-in-bytes On most modern tape drives, you will not need or want to specify
this directive, and if you do so, it will be to make Bacula use fixed block sizes. This statement applies
only to non-random access devices (e.g. tape drives). Blocks written by the storage daemon to a
non-random archive device will never be smaller than the given size-in-bytes. The Storage daemon
will attempt to efficiently fill blocks with data received from active sessions but will, if necessary, add
padding to a block to achieve the required minimum size.

To force the block size to be fixed, as is the case for some non-random access devices (tape drives), set
the Minimum block size and the Maximum block size to the same value (zero included). The
default is that both the minimum and maximum block size are zero and the default block size is 64,512
bytes.

For example, suppose you want a fixed block size of 100K bytes, then you would specify:

Minimum block size = 100K

Maximum block size = 100K

Please note that if you specify a fixed block size as shown above, the tape drive must either be in
variable block size mode, or if it is in fixed block size mode, the block size (generally defined by mt)
must be identical to the size specified in Bacula – otherwise when you attempt to re-read your Volumes,
you will get an error.

If you want the block size to be variable but with a 64K minimum and 200K maximum (and default
as well), you would specify:

Minimum block size = 64K

Maximum blocksize = 200K

Maximum block size = size-in-bytes On most modern tape drives, you will not need to specify this di-
rective. If you do so, it will most likely be to use fixed block sizes (see Minimum block size above).
The Storage daemon will always attempt to write blocks of the specified size-in-bytes to the archive
device. As a consequence, this statement specifies both the default block size and the maximum block
size. The size written never exceed the given size-in-bytes. If adding data to a block would cause it
to exceed the given maximum size, the block will be written to the archive device, and the new data
will begin a new block.

If no value is specified or zero is specified, the Storage daemon will use a default block size of 64,512
bytes (126 * 512).

The maximum size-in-bytes possible is 2,000,000.

Bacula Version 5.0.3 187

Hardware End of Medium = yes|no If No, the archive device is not required to support end of medium
ioctl request, and the storage daemon will use the forward space file function to find the end of the
recorded data. If Yes, the archive device must support the ioctl MTEOM call, which will position the
tape to the end of the recorded data. In addition, your SCSI driver must keep track of the file number
on the tape and report it back correctly by the MTIOCGET ioctl. Note, some SCSI drivers will
correctly forward space to the end of the recorded data, but they do not keep track of the file number.
On Linux machines, the SCSI driver has a fast-eod option, which if set will cause the driver to lose
track of the file number. You should ensure that this option is always turned off using the mt program.

Default setting for Hardware End of Medium is Yes. This function is used before appending to a tape
to ensure that no previously written data is lost. We recommend if you have a non-standard or unusual
tape drive that you use the btape program to test your drive to see whether or not it supports this
function. All modern (after 1998) tape drives support this feature.

Fast Forward Space File = yes|no If No, the archive device is not required to support keeping track
of the file number (MTIOCGET ioctl) during forward space file. If Yes, the archive device must
support the ioctl MTFSF call, which virtually all drivers support, but in addition, your SCSI driver
must keep track of the file number on the tape and report it back correctly by the MTIOCGET ioctl.
Note, some SCSI drivers will correctly forward space, but they do not keep track of the file number or
more seriously, they do not report end of medium.

Default setting for Fast Forward Space File is Yes.

Use MTIOCGET = yes|no If No, the operating system is not required to support keeping track of the
file number and reporting it in the (MTIOCGET ioctl). The default is Yes. If you must set this to
No, Bacula will do the proper file position determination, but it is very unfortunate because it means
that tape movement is very inefficient. Fortunately, this operation system deficiency seems to be the
case only on a few *BSD systems. Operating systems known to work correctly are Solaris, Linux and
FreeBSD.

BSF at EOM = yes|no If No, the default, no special action is taken by Bacula with the End of Medium
(end of tape) is reached because the tape will be positioned after the last EOF tape mark, and Bacula
can append to the tape as desired. However, on some systems, such as FreeBSD, when Bacula reads
the End of Medium (end of tape), the tape will be positioned after the second EOF tape mark (two
successive EOF marks indicated End of Medium). If Bacula appends from that point, all the appended
data will be lost. The solution for such systems is to specify BSF at EOM which causes Bacula to
backspace over the second EOF mark. Determination of whether or not you need this directive is done
using the test command in the btape program.

TWO EOF = yes|no If Yes, Bacula will write two end of file marks when terminating a tape – i.e. after
the last job or at the end of the medium. If No, the default, Bacula will only write one end of file to
terminate the tape.

Backward Space Record = yes|no If Yes, the archive device supports the MTBSR ioctl to backspace
records. If No, this call is not used and the device must be rewound and advanced forward to the
desired position. Default is Yes for non random-access devices. This function if enabled is used at
the end of a Volume after writing the end of file and any ANSI/IBM labels to determine whether or
not the last block was written correctly. If you turn this function off, the test will not be done. This
causes no harm as the re-read process is precautionary rather than required.

Backward Space File = yes|no If Yes, the archive device supports the MTBSF and MTBSF ioctls
to backspace over an end of file mark and to the start of a file. If No, these calls are not used and
the device must be rewound and advanced forward to the desired position. Default is Yes for non
random-access devices.

Forward Space Record = yes|no If Yes, the archive device must support the MTFSR ioctl to forward
space over records. If No, data must be read in order to advance the position on the device. Default
is Yes for non random-access devices.

Forward Space File = yes|no If Yes, the archive device must support the MTFSF ioctl to forward space
by file marks. If No, data must be read to advance the position on the device. Default is Yes for non
random-access devices.

188 Bacula Version 5.0.3

Offline On Unmount = yes|no The default for this directive is No. If Yes the archive device must
support the MTOFFL ioctl to rewind and take the volume offline. In this case, Bacula will issue the
offline (eject) request before closing the device during the unmount command. If No Bacula will
not attempt to offline the device before unmounting it. After an offline is issued, the cassette will be
ejected thus requiring operator intervention to continue, and on some systems require an explicit
load command to be issued (mt -f /dev/xxx load) before the system will recognize the tape. If you
are using an autochanger, some devices require an offline to be issued prior to changing the volume.
However, most devices do not and may get very confused.

If you are using a Linux 2.6 kernel or other OSes such as FreeBSD or Solaris, the Offline On Unmount
will leave the drive with no tape, and Bacula will not be able to properly open the drive and may fail
the job. For more information on this problem, please see the description of Offline On Unmount in
the Tape Testing chapter.

Maximum Concurrent Jobs = <number> where <number> is the maximum number of Jobs that can
run concurrently on a specified Device. Using this directive, it is possible to have different Jobs using
multiple drives, because when the Maximum Concurrent Jobs limit is reached, the Storage Daemon
will start new Jobs on any other available compatible drive. This facilitates writing to multiple drives
with multiple Jobs that all use the same Pool.

Maximum Volume Size = size No more than size bytes will be written onto a given volume on the
archive device. This directive is used mainly in testing Bacula to simulate a small Volume. It can also
be useful if you wish to limit the size of a File Volume to say less than 2GB of data. In some rare cases
of really antiquated tape drives that do not properly indicate when the end of a tape is reached during
writing (though I have read about such drives, I have never personally encountered one). Please note,
this directive is deprecated (being phased out) in favor of the Maximum Volume Bytes defined in
the Director’s configuration file.

Maximum File Size = size No more than size bytes will be written into a given logical file on the volume.
Once this size is reached, an end of file mark is written on the volume and subsequent data are written
into the next file. Breaking long sequences of data blocks with file marks permits quicker positioning
to the start of a given stream of data and can improve recovery from read errors on the volume. The
default is one Gigabyte. This directive creates EOF marks only on tape media. However, regardless of
the medium type (tape, disk, DVD, ...) each time a the Maximum File Size is exceeded, a record is put
into the catalog database that permits seeking to that position on the medium for restore operations.
If you set this to a small value (e.g. 1MB), you will generate lots of database records (JobMedia) and
may significantly increase CPU/disk overhead.

If you are configuring an LTO-3 or LTO-4 tape, you probably will want to set the Maximum File
Size to 2GB to avoid making the drive stop to write an EOF mark.

Note, this directive does not limit the size of Volumes that Bacula will create regardless of whether
they are tape or disk volumes. It changes only the number of EOF marks on a tape and the number of
block positioning records (see below) that are generated. If you want to limit the size of all Volumes
for a particular device, use the Maximum Volume Size directive (above), or use the Maximum
Volume Bytes directive in the Director’s Pool resource, which does the same thing but on a Pool
(Volume) basis.

Block Positioning = yes|no This directive tells Bacula not to use block positioning when doing restores.
Turning this directive off can cause Bacula to be extremely slow when restoring files. You might use
this directive if you wrote your tapes with Bacula in variable block mode (the default), but your drive
was in fixed block mode. The default is yes.

Maximum Network Buffer Size = bytes where bytes specifies the initial network buffer size to use with
the File daemon. This size will be adjusted down if it is too large until it is accepted by the OS. Please
use care in setting this value since if it is too large, it will be trimmed by 512 bytes until the OS is
happy, which may require a large number of system calls. The default value is 32,768 bytes.

The default size was chosen to be relatively large but not too big in the case that you are transmitting
data over Internet. It is clear that on a high speed local network, you can increase this number and
improve performance. For example, some users have found that if you use a value of 65,536 bytes they
get five to ten times the throughput. Larger values for most users don’t seem to improve performance.
If you are interested in improving your backup speeds, this is definitely a place to experiment. You
will probably also want to make the corresponding change in each of your File daemons conf files.

Bacula Version 5.0.3 189

Maximum Spool Size = bytes where the bytes specify the maximum spool size for all jobs that are run-
ning. The default is no limit.

Maximum Job Spool Size = bytes where the bytes specify the maximum spool size for any one job that
is running. The default is no limit. This directive is implemented only in version 1.37 and later.

Spool Directory = directory specifies the name of the directory to be used to store the spool files for this
device. This directory is also used to store temporary part files when writing to a device that requires
mount (DVD). The default is to use the working directory.

Maximum Part Size = bytes This is the maximum size of a volume part file. The default is no limit.
This directive is implemented only in version 1.37 and later.

If the device requires mount, it is transferred to the device when this size is reached. In this case, you
must take care to have enough disk space left in the spool directory.

Otherwise, it is left on the hard disk.

It is ignored for tape and FIFO devices.

19.4 Edit Codes for Mount and Unmount Directives

Before submitting the Mount Command, Unmount Command, Write Part Command, or Free
Space Command directives to the operating system, Bacula performs character substitution of the following
characters:

%% = %

%a = Archive device name

%e = erase (set if cannot mount and first part)

%n = part number

%m = mount point

%v = last part name (i.e. filename)

19.5 Devices that require a mount (DVD)

All the directives in this section are implemented only in Bacula version 1.37 and later and hence are available
in version 1.38.6.

As of version 1.39.5, the directives ”Requires Mount”, ”Mount Point”, ”Mount Command”, and ”Unmount
Command” apply to removable filesystems such as USB in addition to DVD.

Requires Mount = yes|no You must set this directive to yes for DVD-writers, and to no for all other
devices (tapes/files). This directive indicates if the device requires to be mounted to be read, and if it
must be written in a special way. If it set, Mount Point, Mount Command, Unmount Command
and Write Part Command directives must also be defined.

Mount Point = directory Directory where the device can be mounted.

Mount Command = name-string Command that must be executed to mount the device. Before the
command is executed, %a is replaced with the Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Mount Command = "/bin/mount -t iso9660 -o ro %a %m"

For some media, you may need multiple commands. If so, it is recommended that you use a shell script
instead of putting them all into the Mount Command. For example, instead of this:

Mount Command = "/usr/local/bin/mymount"

190 Bacula Version 5.0.3

Where that script contains:

#!/bin/sh

ndasadmin enable -s 1 -o w

sleep 2

mount /dev/ndas-00323794-0p1 /backup

Similar consideration should be given to all other Command parameters.

Unmount Command = name-string Command that must be executed to unmount the device. Before
the command is executed, %a is replaced with the Archive Device, and %m with the Mount Point.

Most frequently, you will define it as follows:

Unmount Command = "/bin/umount %m"

If you need to specify multiple commands, create a shell script.

Write Part Command = name-string Command that must be executed to write a part to the device.
Before the command is executed, %a is replaced with the Archive Device, %m with the Mount Point,
%e is replaced with 1 if we are writing the first part, and with 0 otherwise, and %v with the current
part filename.

For a DVD, you will most frequently specify the Bacula supplied dvd-handler script as follows:

Write Part Command = "/path/dvd-handler %a write %e %v"

Where /path is the path to your scripts install directory, and dvd-handler is the Bacula supplied script
file. This command will already be present, but commented out, in the default bacula-sd.conf file. To
use it, simply remove the comment (#) symbol.

If you need to specify multiple commands, create a shell script.

Free Space Command = name-string Command that must be executed to check how much free space is
left on the device. Before the command is executed,%a is replaced with the Archive Device, %m with
the Mount Point, %e is replaced with 1 if we are writing the first part, and with 0 otherwise, and %v
with the current part filename.

For a DVD, you will most frequently specify the Bacula supplied dvd-handler script as follows:

Free Space Command = "/path/dvd-handler %a free"

Where /path is the path to your scripts install directory, and dvd-handler is the Bacula supplied script
file. If you want to specify your own command, please look at the code of dvd-handler to see what
output Bacula expects from this command. This command will already be present, but commented
out, in the default bacula-sd.conf file. To use it, simply remove the comment (#) symbol.

If you do not set it, Bacula will expect there is always free space on the device.

If you need to specify multiple commands, create a shell script.

Chapter 20

Autochanger Resource

The Autochanger resource supports single or multiple drive autochangers by grouping one or more Device
resources into one unit called an autochanger in Bacula (often referred to as a ”tape library” by autochanger
manufacturers).

If you have an Autochanger, and you want it to function correctly, you must have an Autochanger resource
in your Storage conf file, and your Director’s Storage directives that want to use an Autochanger must refer
to the Autochanger resource name. In previous versions of Bacula, the Director’s Storage directives referred
directly to Device resources that were autochangers. In version 1.38.0 and later, referring directly to Device
resources will not work for Autochangers.

Name = <Autochanger-Name> Specifies the Name of the Autochanger. This name is used in the
Director’s Storage definition to refer to the autochanger. This directive is required.

Device = <Device-name1, device-name2, ...> Specifies the names of the Device resource or resources
that correspond to the autochanger drive. If you have a multiple drive autochanger, you must specify
multiple Device names, each one referring to a separate Device resource that contains a Drive Index
specification that corresponds to the drive number base zero. You may specify multiple device names
on a single line separated by commas, and/or you may specify multiple Device directives. This directive
is required.

Changer Device = name-string The specified name-string gives the system file name of the autochanger
device name. If specified in this resource, the Changer Device name is not needed in the Device resource.
If it is specified in the Device resource (see above), it will take precedence over one specified in the
Autochanger resource.

Changer Command = name-string The name-string specifies an external program to be called that will
automatically change volumes as required by Bacula. Most frequently, you will specify the Bacula
supplied mtx-changer script as follows. If it is specified here, it need not be specified in the Device
resource. If it is also specified in the Device resource, it will take precedence over the one specified in
the Autochanger resource.

The following is an example of a valid Autochanger resource definition:

Autochanger {

Name = "DDS-4-changer"

Device = DDS-4-1, DDS-4-2, DDS-4-3

Changer Device = /dev/sg0

Changer Command = "/etc/bacula/mtx-changer %c %o %S %a %d"

}

Device {

Name = "DDS-4-1"

Drive Index = 0

Autochanger = yes

...

}

191

192 Bacula Version 5.0.3

Device {

Name = "DDS-4-2"

Drive Index = 1

Autochanger = yes

...

Device {

Name = "DDS-4-3"

Drive Index = 2

Autochanger = yes

Autoselect = no

...

}

Please note that it is important to include the Autochanger = yes directive in each Device definition that
belongs to an Autochanger. A device definition should not belong to more than one Autochanger resource.
Also, your Device directive in the Storage resource of the Director’s conf file should have the Autochanger’s
resource name rather than a name of one of the Devices.

If you have a drive that physically belongs to an Autochanger but you don’t want to have it automatically
used when Bacula references the Autochanger for backups, for example, you want to reserve it for restores,
you can add the directive:

Autoselect = no

to the Device resource for that drive. In that case, Bacula will not automatically select that drive when
accessing the Autochanger. You can, still use the drive by referencing it by the Device name directly rather
than the Autochanger name. An example of such a definition is shown above for the Device DDS-4-3, which
will not be selected when the name DDS-4-changer is used in a Storage definition, but will be used if DDS-4-3
is used.

20.1 Capabilities

Label media = yes|no If Yes, permits this device to automatically label blank media without an explicit
operator command. It does so by using an internal algorithm as defined on the Label Format record
in each Pool resource. If this is No as by default, Bacula will label tapes only by specific operator
command (label in the Console) or when the tape has been recycled. The automatic labeling feature
is most useful when writing to disk rather than tape volumes.

Automatic mount = yes|no If Yes (the default), permits the daemon to examine the device to determine
if it contains a Bacula labeled volume. This is done initially when the daemon is started, and then
at the beginning of each job. This directive is particularly important if you have set Always Open
= no because it permits Bacula to attempt to read the device before asking the system operator to
mount a tape. However, please note that the tape must be mounted before the job begins.

20.2 Messages Resource

For a description of the Messages Resource, please see the Messages Resource Chapter of this manual.

20.3 Sample Storage Daemon Configuration File

A example Storage Daemon configuration file might be the following:

#

Default Bacula Storage Daemon Configuration file

Bacula Version 5.0.3 193

#

For Bacula release 1.37.2 (07 July 2005) -- gentoo 1.4.16

#

You may need to change the name of your tape drive

on the "Archive Device" directive in the Device

resource. If you change the Name and/or the

"Media Type" in the Device resource, please ensure

that bacula-dir.conf has corresponding changes.

#

Storage { # definition of myself

Name = rufus-sd

Address = rufus

WorkingDirectory = "$HOME/bacula/bin/working"

Pid Directory = "$HOME/bacula/bin/working"

Maximum Concurrent Jobs = 20

}

#

List Directors who are permitted to contact Storage daemon

#

Director {

Name = rufus-dir

Password = "ZF9Ctf5PQoWCPkmR3s4atCB0usUPg+vWWyIo2VS5ti6k"

}

#

Restricted Director, used by tray-monitor to get the

status of the storage daemon

#

Director {

Name = rufus-mon

Password = "9usxgc307dMbe7jbD16v0PXlhD64UVasIDD0DH2WAujcDsc6"

Monitor = yes

}

#

Devices supported by this Storage daemon

To connect, the Director’s bacula-dir.conf must have the

same Name and MediaType.

#

Autochanger {

Name = Autochanger

Device = Drive-1

Device = Drive-2

Changer Command = "/home/kern/bacula/bin/mtx-changer %c %o %S %a %d"

Changer Device = /dev/sg0

}

Device {

Name = Drive-1 #

Drive Index = 0

Media Type = DLT-8000

Archive Device = /dev/nst0

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = yes;

RemovableMedia = yes;

RandomAccess = no;

AutoChanger = yes

Alert Command = "sh -c ’tapeinfo -f %c |grep TapeAlert|cat’"

}

Device {

Name = Drive-2 #

Drive Index = 1

Media Type = DLT-8000

Archive Device = /dev/nst1

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = yes;

RemovableMedia = yes;

RandomAccess = no;

AutoChanger = yes

Alert Command = "sh -c ’tapeinfo -f %c |grep TapeAlert|cat’"

}

Device {

Name = "HP DLT 80"

Media Type = DLT8000

Archive Device = /dev/nst0

AutomaticMount = yes; # when device opened, read it

194 Bacula Version 5.0.3

AlwaysOpen = yes;

RemovableMedia = yes;

}

#Device {

Name = SDT-7000

Media Type = DDS-2

Archive Device = /dev/nst0

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = yes;

RemovableMedia = yes;

#}

#Device {

Name = Floppy

Media Type = Floppy

Archive Device = /mnt/floppy

RemovableMedia = yes;

Random Access = Yes;

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = no;

#}

#Device {

Name = FileStorage

Media Type = File

Archive Device = /tmp

LabelMedia = yes; # lets Bacula label unlabeled media

Random Access = Yes;

AutomaticMount = yes; # when device opened, read it

RemovableMedia = no;

AlwaysOpen = no;

#}

#Device {

Name = "NEC ND-1300A"

Media Type = DVD

Archive Device = /dev/hda

LabelMedia = yes; # lets Bacula label unlabeled media

Random Access = Yes;

AutomaticMount = yes; # when device opened, read it

RemovableMedia = yes;

AlwaysOpen = no;

MaximumPartSize = 800M;

RequiresMount = yes;

MountPoint = /mnt/cdrom;

MountCommand = "/bin/mount -t iso9660 -o ro %a %m";

UnmountCommand = "/bin/umount %m";

SpoolDirectory = /tmp/backup;

WritePartCommand = "/etc/bacula/dvd-handler %a write %e %v"

FreeSpaceCommand = "/etc/bacula/dvd-handler %a free"

#}

#

A very old Exabyte with no end of media detection

#

#Device {

Name = "Exabyte 8mm"

Media Type = "8mm"

Archive Device = /dev/nst0

Hardware end of medium = No;

AutomaticMount = yes; # when device opened, read it

AlwaysOpen = Yes;

RemovableMedia = yes;

#}

#

Send all messages to the Director,

mount messages also are sent to the email address

#

Messages {

Name = Standard

director = rufus-dir = all

operator = root = mount

}

Chapter 21

Messages Resource

The Messages resource defines how messages are to be handled and destinations to which they should be
sent.

Even though each daemon has a full message handler, within the File daemon and the Storage daemon,
you will normally choose to send all the appropriate messages back to the Director. This permits all the
messages associated with a single Job to be combined in the Director and sent as a single email message to
the user, or logged together in a single file.

Each message that Bacula generates (i.e. that each daemon generates) has an associated type such as INFO,
WARNING, ERROR, FATAL, etc. Using the message resource, you can specify which message types you
wish to see and where they should be sent. In addition, a message may be sent to multiple destinations.
For example, you may want all error messages both logged as well as sent to you in an email. By defining
multiple messages resources, you can have different message handling for each type of Job (e.g. Full backups
versus Incremental backups).

In general, messages are attached to a Job and are included in the Job report. There are some rare cases,
where this is not possible, e.g. when no job is running, or if a communications error occurs between a daemon
and the director. In those cases, the message may remain in the system, and should be flushed at the end of
the next Job. However, since such messages are not attached to a Job, any that are mailed will be sent to
/usr/lib/sendmail. On some systems, such as FreeBSD, if your sendmail is in a different place, you may
want to link it to the the above location.

The records contained in a Messages resource consist of a destination specification followed by a list of
message-types in the format:

destination = message-type1, message-type2, message-type3, ...

or for those destinations that need and address specification (e.g. email):

destination = address = message-type1, message-type2, message-type3, ... Where destina-
tion is one of a predefined set of keywords that define where the message is to be sent (stdout, file,
...), message-type is one of a predefined set of keywords that define the type of message generated
by Bacula (ERROR, WARNING, FATAL, ...), and address varies according to the destination
keyword, but is typically an email address or a filename.

The following are the list of the possible record definitions that can be used in a message resource.

Messages Start of the Messages records.

Name = <name> The name of the Messages resource. The name you specify here will be used to tie this
Messages resource to a Job and/or to the daemon.

195

196 Bacula Version 5.0.3

MailCommand = <command> In the absence of this resource, Bacula will send all mail using the
following command:

mail -s ”Bacula Message” <recipients>

In many cases, depending on your machine, this command may not work. However, by using the Mail-
Command, you can specify exactly how to send the mail. During the processing of the command
part, normally specified as a quoted string, the following substitutions will be used:

• %% = %

• %c = Client’s name

• %d = Director’s name

• %e = Job Exit code (OK, Error, ...)

• %i = Job Id

• %j = Unique Job name

• %l = Job level

• %n = Job name

• %r = Recipients

• %t = Job type (e.g. Backup, ...)

Please note: any MailCommand directive must be specified in the Messages resource before the
desired Mail, MailOnSuccess, or MailOnError directive. In fact, each of those directives may be
preceded by a different MailCommand.

The following is the command I (Kern) use. Note, the whole command should appear on a single line
in the configuration file rather than split as is done here for presentation:

mailcommand = ”/home/kern/bacula/bin/bsmtp -h mail.example.com -f \”\(Bacula\)
%r\” -s \”Bacula: %t %e of %c %l\” %r”

The bsmtp program is provided as part of Bacula. For additional details, please see the
bsmtp – Customizing Your Email Messages section of the Bacula Utility Programs chapter of this
manual. Please test any mailcommand that you use to ensure that your bsmtp gateway accepts the
addressing form that you use. Certain programs such as Exim can be very selective as to what forms
are permitted particularly in the from part.

OperatorCommand = <command> This resource specification is similar to the MailCommand ex-
cept that it is used for Operator messages. The substitutions performed for the MailCommand are
also done for this command. Normally, you will set this command to the same value as specified for the
MailCommand. The OperatorCommand directive must appear in the Messages resource before
the Operator directive.

<destination> = <message-type1>, <message-type2>, ... Where destination may be one of the
following:

stdout Send the message to standard output.

stderr Send the message to standard error.

console Send the message to the console (Bacula Console). These messages are held until the console
program connects to the Director.

<destination> = <address> = <message-type1>, <message-type2>, ...

Where address depends on the destination.

The destination may be one of the following:

director Send the message to the Director whose name is given in the address field. Note, in the
current implementation, the Director Name is ignored, and the message is sent to the Director
that started the Job.

file Send the message to the filename given in the address field. If the file already exists, it will be
overwritten.

append Append the message to the filename given in the address field. If the file already exists, it
will be appended to. If the file does not exist, it will be created.

Bacula Version 5.0.3 197

syslog Send the message to the system log (syslog) using the facility specified in the address field.
Note, for the moment, the address field is ignored and the message is always sent to the
LOG DAEMON facility with level LOG ERR. See man 3 syslog for more details. Example:

syslog = all, !skipped

Although the syslog destination is not used in the default Bacula config files, in certain cases
where Bacula encounters errors in trying to deliver a message, as a last resort, it will send it to
the system syslog to prevent loss of the message, so you might occassionally check the syslog
for Bacula output (normally /var/log/syslog).

mail Send the message to the email addresses that are given as a comma separated list in the address
field. Mail messages are grouped together during a job and then sent as a single email message
when the job terminates. The advantage of this destination is that you are notified about every
Job that runs. However, if you backup five or ten machines every night, the volume of email
messages can be important. Some users use filter programs such as procmail to automatically
file this email based on the Job termination code (see mailcommand).

mail on error Send the message to the email addresses that are given as a comma separated list in the
address field if the Job terminates with an error condition. MailOnError messages are grouped
together during a job and then sent as a single email message when the job terminates. This
destination differs from the mail destination in that if the Job terminates normally, the message
is totally discarded (for this destination). If the Job terminates in error, it is emailed. By using
other destinations such as append you can ensure that even if the Job terminates normally, the
output information is saved.

mail on success Send the message to the email addresses that are given as a comma separated list in
the address field if the Job terminates normally (no error condition). MailOnSuccess messages
are grouped together during a job and then sent as a single email message when the job terminates.
This destination differs from the mail destination in that if the Job terminates abnormally, the
message is totally discarded (for this destination). If the Job terminates normally, it is emailed.

operator Send the message to the email addresses that are specified as a comma separated list in the
address field. This is similar to mail above, except that each message is sent as received. Thus
there is one email per message. This is most useful for mount messages (see below).

console Send the message to the Bacula console.

stdout Send the message to the standard output (normally not used).

stderr Send the message to the standard error output (normally not used).

catalog Send the message to the Catalog database. The message will be written to the table named
Log and a timestamp field will also be added. This permits Job Reports and other messages to
be recorded in the Catalog so that they can be accessed by reporting software. Bacula will prune
the Log records associated with a Job when the Job records are pruned. Otherwise, Bacula never
uses these records internally, so this destination is only used for special purpose programs (e.g.
bweb).

For any destination, the message-type field is a comma separated list of the following types or classes
of messages:

info General information messages.

warning Warning messages. Generally this is some unusual condition but not expected to be serious.

error Non-fatal error messages. The job continues running. Any error message should be investigated
as it means that something went wrong.

fatal Fatal error messages. Fatal errors cause the job to terminate.

terminate Message generated when the daemon shuts down.

notsaved Files not saved because of some error. Usually because the file cannot be accessed (i.e. it
does not exist or is not mounted).

skipped Files that were skipped because of a user supplied option such as an incremental backup or
a file that matches an exclusion pattern. This is not considered an error condition such as the
files listed for the notsaved type because the configuration file explicitly requests these types
of files to be skipped. For example, any unchanged file during an incremental backup, or any
subdirectory if the no recursion option is specified.

198 Bacula Version 5.0.3

mount Volume mount or intervention requests from the Storage daemon. These requests require a
specific operator intervention for the job to continue.

restored The ls style listing generated for each file restored is sent to this message class.

all All message types.

security Security info/warning messages principally from unauthorized connection attempts.

alert Alert messages. These are messages generated by tape alerts.

volmgmt Volume management messages. Currently there are no volume mangement messages gen-
erated.

The following is an example of a valid Messages resource definition, where all messages except files explicitly
skipped or daemon termination messages are sent by email to enforcement@sec.com. In addition all mount
messages are sent to the operator (i.e. emailed to enforcement@sec.com). Finally all messages other than
explicitly skipped files and files saved are sent to the console:

Messages {

Name = Standard

mail = enforcement@sec.com = all, !skipped, !terminate

operator = enforcement@sec.com = mount

console = all, !skipped, !saved

}

With the exception of the email address (changed to avoid junk mail from robot’s), an example Director’s
Messages resource is as follows. Note, the mailcommand and operatorcommand are on a single line –
they had to be split for this manual:

Messages {

Name = Standard

mailcommand = "bacula/bin/bsmtp -h mail.example.com \

-f \"\(Bacula\) %r\" -s \"Bacula: %t %e of %c %l\" %r"

operatorcommand = "bacula/bin/bsmtp -h mail.example.com \

-f \"\(Bacula\) %r\" -s \"Bacula: Intervention needed \

for %j\" %r"

MailOnError = security@example.com = all, !skipped, \

!terminate

append = "bacula/bin/log" = all, !skipped, !terminate

operator = security@example.com = mount

console = all, !skipped, !saved

}

Chapter 22

Console Configuration

22.1 General

The Console configuration file is the simplest of all the configuration files, and in general, you should not need
to change it except for the password. It simply contains the information necessary to contact the Director
or Directors.

For a general discussion of the syntax of configuration files and their resources including the data types
recognized by Bacula, please see the Configuration chapter of this manual.

The following Console Resource definition must be defined:

22.2 The Director Resource

The Director resource defines the attributes of the Director running on the network. You may have multiple
Director resource specifications in a single Console configuration file. If you have more than one, you will be
prompted to choose one when you start the Console program.

Director Start of the Director directives.

Name = <name> The director name used to select among different Directors, otherwise, this name is not
used.

DIRPort = <port-number> Specify the port to use to connect to the Director. This value will most
likely already be set to the value you specified on the --with-base-port option of the ./configure
command. This port must be identical to the DIRport specified in the Director resource of the
Director’s configuration file. The default is 9101 so this directive is not normally specified.

Address = <address> Where the address is a host name, a fully qualified domain name, or a network
address used to connect to the Director.

Password = <password> Where the password is the password needed for the Director to accept the
Console connection. This password must be identical to the Password specified in the Director
resource of the Director’s configuration file. This directive is required.

An actual example might be:

Director {

Name = HeadMan

address = rufus.cats.com

password = xyz1erploit

}

199

200 Bacula Version 5.0.3

22.3 The ConsoleFont Resource

The ConsoleFont resource is available only in the GNOME version of the console. It permits you to define
the font that you want used to display in the main listing window.

ConsoleFont Start of the ConsoleFont directives.

Name = <name> The name of the font.

Font = <Pango Font Name> The string value given here defines the desired font. It is specified in the
Pango format. For example, the default specification is:

Font = "LucidaTypewriter 9"

Thanks to Phil Stracchino for providing the code for this feature.

An different example might be:

ConsoleFont {

Name = Default

Font = "Monospace 10"

}

22.4 The Console Resource

As of Bacula version 1.33 and higher, there are three different kinds of consoles, which the administrator or
user can use to interact with the Director. These three kinds of consoles comprise three different security
levels.

• The first console type is an anonymous or default console, which has full privileges. There is no
console resource necessary for this type since the password is specified in the Director resource. This is
the kind of console that was initially implemented in versions prior to 1.33 and remains valid. Typically
you would use it only for administrators.

• The second type of console, and new to version 1.33 and higher is a ”named” or ”restricted” console
defined within a Console resource in both the Director’s configuration file and in the Console’s config-
uration file. Both the names and the passwords in these two entries must match much as is the case
for Client programs.

This second type of console begins with absolutely no privileges except those explicitly specified in the
Director’s Console resource. Note, the definition of what these restricted consoles can do is determined
by the Director’s conf file.

Thus you may define within the Director’s conf file multiple Consoles with different names and pass-
words, sort of like multiple users, each with different privileges. As a default, these consoles can do
absolutely nothing – no commands what so ever. You give them privileges or rather access to com-
mands and resources by specifying access control lists in the Director’s Console resource. This gives
the administrator fine grained control over what particular consoles (or users) can do.

• The third type of console is similar to the above mentioned restricted console in that it requires a
Console resource definition in both the Director and the Console. In addition, if the console name,
provided on the Name = directive, is the same as a Client name, the user of that console is permitted
to use the SetIP command to change the Address directive in the Director’s client resource to the IP
address of the Console. This permits portables or other machines using DHCP (non-fixed IP addresses)
to ”notify” the Director of their current IP address.

The Console resource is optional and need not be specified. However, if it is specified, you can use ACLs
(Access Control Lists) in the Director’s configuration file to restrict the particular console (or user) to see
only information pertaining to his jobs or client machine.

Bacula Version 5.0.3 201

You may specify as many Console resources in the console’s conf file. If you do so, generally the first Console
resource will be used. However, if you have multiple Director resources (i.e. you want to connect to different
directors), you can bind one of your Console resources to a particular Director resource, and thus when you
choose a particular Director, the appropriate Console configuration resource will be used. See the ”Director”
directive in the Console resource described below for more information.

Note, the Console resource is optional, but can be useful for restricted consoles as noted above.

Console Start of the Console resource.

Name = <name> The Console name used to allow a restricted console to change its IP address using the
SetIP command. The SetIP command must also be defined in the Director’s conf CommandACL list.

Password = <password> If this password is supplied, then the password specified in the Director resource
of you Console conf will be ignored. See below for more details.

Director = <director-resource-name> If this directive is specified, this Console resource will be used
by bconsole when that particular director is selected when first starting bconsole. I.e. it binds a
particular console resource with its name and password to a particular director.

Heartbeat Interval = <time-interval> This directive is optional and if specified will cause the Console
to set a keepalive interval (heartbeat) in seconds on each of the sockets to communicate with the
Director. It is implemented only on systems (Linux, ...) that provide the setsockopt TCP KEEPIDLE
function. The default value is zero, which means no change is made to the socket.

The following configuration files were supplied by Phil Stracchino. For example, if we define the following
in the user’s bconsole.conf file (or perhaps the bwx-console.conf file):

Director {

Name = MyDirector

DIRport = 9101

Address = myserver

Password = "XXXXXXXXXXX" # no, really. this is not obfuscation.

}

Console {

Name = restricted-user

Password = "UntrustedUser"

}

Where the Password in the Director section is deliberately incorrect, and the Console resource is given a
name, in this case restricted-user. Then in the Director’s bacula-dir.conf file (not directly accessible by
the user), we define:

Console {

Name = restricted-user

Password = "UntrustedUser"

JobACL = "Restricted Client Save"

ClientACL = restricted-client

StorageACL = main-storage

ScheduleACL = *all*

PoolACL = *all*

FileSetACL = "Restricted Client’s FileSet"

CatalogACL = DefaultCatalog

CommandACL = run

}

the user logging into the Director from his Console will get logged in as restricted-user, and he will only be
able to see or access a Job with the nameRestricted Client Save a Client with the name restricted-client,
a Storage device main-storage, any Schedule or Pool, a FileSet named Restricted Client’s FileSet, a
Catalog named DefaultCatalog, and the only command he can use in the Console is the run command.
In other words, this user is rather limited in what he can see and do with Bacula.

202 Bacula Version 5.0.3

The following is an example of a bconsole conf file that can access several Directors and has different Consoles
depending on the director:

Director {

Name = MyDirector

DIRport = 9101

Address = myserver

Password = "XXXXXXXXXXX" # no, really. this is not obfuscation.

}

Director {

Name = SecondDirector

DIRport = 9101

Address = secondserver

Password = "XXXXXXXXXXX" # no, really. this is not obfuscation.

}

Console {

Name = restricted-user

Password = "UntrustedUser"

Director = MyDirector

}

Console {

Name = restricted-user

Password = "A different UntrustedUser"

Director = SecondDirector

}

The second Director referenced at ”secondserver” might look like the following:

Console {

Name = restricted-user

Password = "A different UntrustedUser"

JobACL = "Restricted Client Save"

ClientACL = restricted-client

StorageACL = second-storage

ScheduleACL = *all*

PoolACL = *all*

FileSetACL = "Restricted Client’s FileSet"

CatalogACL = RestrictedCatalog

CommandACL = run, restore

WhereACL = "/"

}

22.5 Console Commands

For more details on running the console and its commands, please see the Bacula Console chapter of this
manual.

22.6 Sample Console Configuration File

An example Console configuration file might be the following:

#

Bacula Console Configuration File

#

Director {

Name = HeadMan

address = "my_machine.my_domain.com"

Password = Console_password

}

Chapter 23

Monitor Configuration

The Monitor configuration file is a stripped down version of the Director configuration file, mixed with a
Console configuration file. It simply contains the information necessary to contact Directors, Clients, and
Storage daemons you want to monitor.

For a general discussion of configuration file and resources including the data types recognized by Bacula,
please see the Configuration chapter of this manual.

The following Monitor Resource definition must be defined:

• Monitor – to define the Monitor’s name used to connect to all the daemons and the password used to
connect to the Directors. Note, you must not define more than one Monitor resource in the Monitor
configuration file.

• At least one Client, Storage or Director resource, to define the daemons to monitor.

23.1 The Monitor Resource

The Monitor resource defines the attributes of the Monitor running on the network. The parameters you
define here must be configured as a Director resource in Clients and Storages configuration files, and as a
Console resource in Directors configuration files.

Monitor Start of the Monitor records.

Name = <name> Specify the Director name used to connect to Client and Storage, and the Console name
used to connect to Director. This record is required.

Password = <password> Where the password is the password needed for Directors to accept the Console
connection. This password must be identical to the Password specified in the Console resource of
the Director’s configuration file. This record is required if you wish to monitor Directors.

Refresh Interval = <time> Specifies the time to wait between status requests to each daemon. It can’t
be set to less than 1 second, or more than 10 minutes, and the default value is 5 seconds.

23.2 The Director Resource

The Director resource defines the attributes of the Directors that are monitored by this Monitor.

As you are not permitted to define a Password in this resource, to avoid obtaining full Director privileges, you
must create a Console resource in the Director’s configuration file, using the Console Name and Password

203

204 Bacula Version 5.0.3

defined in the Monitor resource. To avoid security problems, you should configure this Console resource to
allow access to no other daemons, and permit the use of only two commands: status and .status (see below
for an example).

You may have multiple Director resource specifications in a single Monitor configuration file.

Director Start of the Director records.

Name = <name> The Director name used to identify the Director in the list of monitored daemons. It
is not required to be the same as the one defined in the Director’s configuration file. This record is
required.

DIRPort = <port-number> Specify the port to use to connect to the Director. This value will most
likely already be set to the value you specified on the --with-base-port option of the ./configure
command. This port must be identical to the DIRport specified in the Director resource of the
Director’s configuration file. The default is 9101 so this record is not normally specified.

Address = <address> Where the address is a host name, a fully qualified domain name, or a network
address used to connect to the Director. This record is required.

23.3 The Client Resource

The Client resource defines the attributes of the Clients that are monitored by this Monitor.

You must create a Director resource in the Client’s configuration file, using the Director Name defined in the
Monitor resource. To avoid security problems, you should set the Monitor directive to Yes in this Director
resource.

You may have multiple Director resource specifications in a single Monitor configuration file.

Client (or FileDaemon) Start of the Client records.

Name = <name> The Client name used to identify the Director in the list of monitored daemons. It is
not required to be the same as the one defined in the Client’s configuration file. This record is required.

Address = <address> Where the address is a host name, a fully qualified domain name, or a network
address in dotted quad notation for a Bacula File daemon. This record is required.

FD Port = <port-number> Where the port is a port number at which the Bacula File daemon can be
contacted. The default is 9102.

Password = <password> This is the password to be used when establishing a connection with the File
services, so the Client configuration file on the machine to be backed up must have the same password
defined for this Director. This record is required.

23.4 The Storage Resource

The Storage resource defines the attributes of the Storages that are monitored by this Monitor.

You must create a Director resource in the Storage’s configuration file, using the Director Name defined in
the Monitor resource. To avoid security problems, you should set the Monitor directive to Yes in this
Director resource.

You may have multiple Director resource specifications in a single Monitor configuration file.

Storage Start of the Storage records.

Bacula Version 5.0.3 205

Name = <name> The Storage name used to identify the Director in the list of monitored daemons. It
is not required to be the same as the one defined in the Storage’s configuration file. This record is
required.

Address = <address> Where the address is a host name, a fully qualified domain name, or a network
address in dotted quad notation for a Bacula Storage daemon. This record is required.

SD Port = <port> Where port is the port to use to contact the storage daemon for information and
to start jobs. This same port number must appear in the Storage resource of the Storage daemon’s
configuration file. The default is 9103.

Password = <password> This is the password to be used when establishing a connection with the Storage
services. This same password also must appear in the Director resource of the Storage daemon’s
configuration file. This record is required.

23.5 Tray Monitor Security

There is no security problem in relaxing the permissions on tray-monitor.conf as long as FD, SD and DIR
are configured properly, so the passwords contained in this file only gives access to the status of the daemons.
It could be a security problem if you consider the status information as potentially dangerous (I don’t think
it is the case).

Concerning Director’s configuration:
In tray-monitor.conf, the password in the Monitor resource must point to a restricted console in bacula-
dir.conf (see the documentation). So, if you use this password with bconsole, you’ll only have access to the
status of the director (commands status and .status). It could be a security problem if there is a bug in the
ACL code of the director.

Concerning File and Storage Daemons’ configuration:
In tray-monitor.conf, the Name in the Monitor resource must point to a Director resource in bacula-
fd/sd.conf, with the Monitor directive set to Yes (once again, see the documentation). It could be a security
problem if there is a bug in the code which check if a command is valid for a Monitor (this is very unlikely
as the code is pretty simple).

23.6 Sample Tray Monitor configuration

An example Tray Monitor configuration file might be the following:

#

Bacula Tray Monitor Configuration File

#

Monitor {

Name = rufus-mon # password for Directors

Password = "GN0uRo7PTUmlMbqrJ2Gr1p0fk0HQJTxwnFyE4WSST3MWZseR"

RefreshInterval = 10 seconds

}

Client {

Name = rufus-fd

Address = rufus

FDPort = 9102 # password for FileDaemon

Password = "FYpq4yyI1y562EMS35bA0J0QC0M2L3t5cZObxT3XQxgxppTn"

}

Storage {

Name = rufus-sd

Address = rufus

SDPort = 9103 # password for StorageDaemon

Password = "9usxgc307dMbe7jbD16v0PXlhD64UVasIDD0DH2WAujcDsc6"

}

Director {

Name = rufus-dir

206 Bacula Version 5.0.3

DIRport = 9101

address = rufus

}

23.6.1 Sample File daemon’s Director record.

Click here to see the full example.

#

Restricted Director, used by tray-monitor to get the

status of the file daemon

#

Director {

Name = rufus-mon

Password = "FYpq4yyI1y562EMS35bA0J0QC0M2L3t5cZObxT3XQxgxppTn"

Monitor = yes

}

23.6.2 Sample Storage daemon’s Director record.

Click here to see the full example.

#

Restricted Director, used by tray-monitor to get the

status of the storage daemon

#

Director {

Name = rufus-mon

Password = "9usxgc307dMbe7jbD16v0PXlhD64UVasIDD0DH2WAujcDsc6"

Monitor = yes

}

23.6.3 Sample Director’s Console record.

Click here to see the full example.

#

Restricted console used by tray-monitor to get the status of the director

#

Console {

Name = Monitor

Password = "GN0uRo7PTUmlMbqrJ2Gr1p0fk0HQJTxwnFyE4WSST3MWZseR"

CommandACL = status, .status

}

Chapter 24

The Restore Command

24.1 General

Below, we will discuss restoring files with the Console restore command, which is the recommended way of
doing restoring files. It is not possible to restore files by automatically starting a job as you do with Backup,
Verify, ... jobs. However, in addition to the console restore command, there is a standalone program
named bextract, which also permits restoring files. For more information on this program, please see the
Bacula Utility Programs chapter of this manual. We don’t particularly recommend the bextract program
because it lacks many of the features of the normal Bacula restore, such as the ability to restore Win32 files
to Unix systems, and the ability to restore access control lists (ACL). As a consequence, we recommend,
wherever possible to use Bacula itself for restores as described below.

You may also want to look at the bls program in the same chapter, which allows you to list the contents
of your Volumes. Finally, if you have an old Volume that is no longer in the catalog, you can restore the
catalog entries using the program named bscan, documented in the same Bacula Utility Programs chapter.

In general, to restore a file or a set of files, you must run a restore job. That is a job with Type =
Restore. As a consequence, you will need a predefined restore job in your bacula-dir.conf (Director’s
config) file. The exact parameters (Client, FileSet, ...) that you define are not important as you can either
modify them manually before running the job or if you use the restore command, explained below, Bacula
will automatically set them for you. In fact, you can no longer simply run a restore job. You must use the
restore command.

Since Bacula is a network backup program, you must be aware that when you restore files, it is up to you to
ensure that you or Bacula have selected the correct Client and the correct hard disk location for restoring
those files. Bacula will quite willingly backup client A, and restore it by sending the files to a different
directory on client B. Normally, you will want to avoid this, but assuming the operating systems are not too
different in their file structures, this should work perfectly well, if so desired. By default, Bacula will restore
data to the same Client that was backed up, and those data will be restored not to the original places but
to /tmp/bacula-restores. You may modify any of these defaults when the restore command prompts you
to run the job by selecting the mod option.

24.2 The Restore Command

Since Bacula maintains a catalog of your files and on which Volumes (disk or tape), they are stored, it can
do most of the bookkeeping work, allowing you simply to specify what kind of restore you want (current,
before a particular date), and what files to restore. Bacula will then do the rest.

This is accomplished using the restore command in the Console. First you select the kind of restore you
want, then the JobIds are selected, the File records for those Jobs are placed in an internal Bacula directory
tree, and the restore enters a file selection mode that allows you to interactively walk up and down the file

207

208 Bacula Version 5.0.3

tree selecting individual files to be restored. This mode is somewhat similar to the standard Unix restore
program’s interactive file selection mode.

If a Job’s file records have been pruned from the catalog, the restore command will be unable to find any
files to restore. Bacula will ask if you want to restore all of them or if you want to use a regular expression
to restore only a selection while reading media. See FileRegex option and below for more details on this.

Within the Console program, after entering the restore command, you are presented with the following
selection prompt:

First you select one or more JobIds that contain files

to be restored. You will be presented several methods

of specifying the JobIds. Then you will be allowed to

select which files from those JobIds are to be restored.

To select the JobIds, you have the following choices:

1: List last 20 Jobs run

2: List Jobs where a given File is saved

3: Enter list of comma separated JobIds to select

4: Enter SQL list command

5: Select the most recent backup for a client

6: Select backup for a client before a specified time

7: Enter a list of files to restore

8: Enter a list of files to restore before a specified time

9: Find the JobIds of the most recent backup for a client

10: Find the JobIds for a backup for a client before a specified time

11: Enter a list of directories to restore for found JobIds

12: Cancel

Select item: (1-12):

There are a lot of options, and as a point of reference, most people will want to slect item 5 (the most recent
backup for a client). The details of the above options are:

• Item 1 will list the last 20 jobs run. If you find the Job you want, you can then select item 3 and enter
its JobId(s).

• Item 2 will list all the Jobs where a specified file is saved. If you find the Job you want, you can then
select item 3 and enter the JobId.

• Item 3 allows you the enter a list of comma separated JobIds whose files will be put into the directory
tree. You may then select which files from those JobIds to restore. Normally, you would use this option
if you have a particular version of a file that you want to restore and you know its JobId. The most
common options (5 and 6) will not select a job that did not terminate normally, so if you know a file
is backed up by a Job that failed (possibly because of a system crash), you can access it through this
option by specifying the JobId.

• Item 4 allows you to enter any arbitrary SQL command. This is probably the most primitive way of
finding the desired JobIds, but at the same time, the most flexible. Once you have found the JobId(s),
you can select item 3 and enter them.

• Item 5 will automatically select the most recent Full backup and all subsequent incremental and
differential backups for a specified Client. These are the Jobs and Files which, if reloaded, will restore
your system to the most current saved state. It automatically enters the JobIds found into the directory
tree in an optimal way such that only the most recent copy of any particular file found in the set of
Jobs will be restored. This is probably the most convenient of all the above options to use if you wish
to restore a selected Client to its most recent state.

There are two important things to note. First, this automatic selection will never select a job that
failed (terminated with an error status). If you have such a job and want to recover one or more files
from it, you will need to explicitly enter the JobId in item 3, then choose the files to restore.

If some of the Jobs that are needed to do the restore have had their File records pruned, the restore
will be incomplete. Bacula currently does not correctly detect this condition. You can however, check
for this by looking carefully at the list of Jobs that Bacula selects and prints. If you find Jobs with the
JobFiles column set to zero, when files should have been backed up, then you should expect problems.

Bacula Version 5.0.3 209

If all the File records have been pruned, Bacula will realize that there are no file records in any of the
JobIds chosen and will inform you. It will then propose doing a full restore (non-selective) of those
JobIds. This is possible because Bacula still knows where the beginning of the Job data is on the
Volumes, even if it does not know where particular files are located or what their names are.

• Item 6 allows you to specify a date and time, after which Bacula will automatically select the most
recent Full backup and all subsequent incremental and differential backups that started before the
specified date and time.

• Item 7 allows you to specify one or more filenames (complete path required) to be restored. Each
filename is entered one at a time or if you prefix a filename with the less-than symbol (<) Bacula
will read that file and assume it is a list of filenames to be restored. If you prefix the filename with a
question mark (?), then the filename will be interpreted as an SQL table name, and Bacula will include
the rows of that table in the list to be restored. The table must contain the JobId in the first column
and the FileIndex in the second column. This table feature is intended for external programs that
want to build their own list of files to be restored. The filename entry mode is terminated by entering
a blank line.

• Item 8 allows you to specify a date and time before entering the filenames. See Item 7 above for more
details.

• Item 9 allows you find the JobIds of the most recent backup for a client. This is much like option 5
(it uses the same code), but those JobIds are retained internally as if you had entered them manually.
You may then select item 11 (see below) to restore one or more directories.

• Item 10 is the same as item 9, except that it allows you to enter a before date (as with item 6). These
JobIds will then be retained internally.

• Item 11 allows you to enter a list of JobIds from which you can select directories to be restored. The
list of JobIds can have been previously created by using either item 9 or 10 on the menu. You may
then enter a full path to a directory name or a filename preceded by a less than sign (<). The filename
should contain a list of directories to be restored. All files in those directories will be restored, but if
the directory contains subdirectories, nothing will be restored in the subdirectory unless you explicitly
enter its name.

• Item 12 allows you to cancel the restore command.

As an example, suppose that we select item 5 (restore to most recent state). If you have not specified a
client=xxx on the command line, it it will then ask for the desired Client, which on my system, will print
all the Clients found in the database as follows:

Defined clients:

1: Rufus

2: Matou

3: Polymatou

4: Minimatou

5: Minou

6: MatouVerify

7: PmatouVerify

8: RufusVerify

9: Watchdog

Select Client (File daemon) resource (1-9):

You will probably have far fewer Clients than this example, and if you have only one Client, it will be
automatically selected. In this case, I enter Rufus to select the Client. Then Bacula needs to know what
FileSet is to be restored, so it prompts with:

The defined FileSet resources are:

1: Full Set

2: Other Files

Select FileSet resource (1-2):

210 Bacula Version 5.0.3

If you have only one FileSet defined for the Client, it will be selected automatically. I choose item 1, which is
my full backup. Normally, you will only have a single FileSet for each Job, and if your machines are similar
(all Linux) you may only have one FileSet for all your Clients.

At this point, Bacula has all the information it needs to find the most recent set of backups. It will then
query the database, which may take a bit of time, and it will come up with something like the following.
Note, some of the columns are truncated here for presentation:

+-------+------+----------+-------------+-------------+------+-------+------------+

| JobId | Levl | JobFiles | StartTime | VolumeName | File | SesId |VolSesTime |

+-------+------+----------+-------------+-------------+------+-------+------------+

| 1,792 | F | 128,374 | 08-03 01:58 | DLT-19Jul02 | 67 | 18 | 1028042998 |

| 1,792 | F | 128,374 | 08-03 01:58 | DLT-04Aug02 | 0 | 18 | 1028042998 |

| 1,797 | I | 254 | 08-04 13:53 | DLT-04Aug02 | 5 | 23 | 1028042998 |

| 1,798 | I | 15 | 08-05 01:05 | DLT-04Aug02 | 6 | 24 | 1028042998 |

+-------+------+----------+-------------+-------------+------+-------+------------+

You have selected the following JobId: 1792,1792,1797

Building directory tree for JobId 1792 ...

Building directory tree for JobId 1797 ...

Building directory tree for JobId 1798 ...

cwd is: /

$

Depending on the number of JobFiles for each JobId, the Building directory tree ...” can take a bit of
time. If you notice ath all the JobFiles are zero, your Files have probably been pruned and you will not be
able to select any individual files – it will be restore everything or nothing.

In our example, Bacula found four Jobs that comprise the most recent backup of the specified Client and
FileSet. Two of the Jobs have the same JobId because that Job wrote on two different Volumes. The third
Job was an incremental backup to the previous Full backup, and it only saved 254 Files compared to 128,374
for the Full backup. The fourth Job was also an incremental backup that saved 15 files.

Next Bacula entered those Jobs into the directory tree, with no files marked to be restored as a default, tells
you how many files are in the tree, and tells you that the current working directory (cwd) is /. Finally,
Bacula prompts with the dollar sign ($) to indicate that you may enter commands to move around the
directory tree and to select files.

If you want all the files to automatically be marked when the directory tree is built, you could have entered
the command restore all, or at the $ prompt, you can simply enter mark *.

Instead of choosing item 5 on the first menu (Select the most recent backup for a client), if we had chosen
item 3 (Enter list of JobIds to select) and we had entered the JobIds 1792,1797,1798 we would have arrived
at the same point.

One point to note, if you are manually entering JobIds, is that you must enter them in the order they were
run (generally in increasing JobId order). If you enter them out of order and the same file was saved in two
or more of the Jobs, you may end up with an old version of that file (i.e. not the most recent).

Directly entering the JobIds can also permit you to recover data from a Job that wrote files to tape but that
terminated with an error status.

While in file selection mode, you can enter help or a question mark (?) to produce a summary of the
available commands:

Command Description

======= ===========

cd change current directory

count count marked files in and below the cd

dir long list current directory, wildcards allowed

done leave file selection mode

estimate estimate restore size

exit same as done command

find find files, wildcards allowed

help print help

ls list current directory, wildcards allowed

Bacula Version 5.0.3 211

lsmark list the marked files in and below the cd

mark mark dir/file to be restored recursively in dirs

markdir mark directory name to be restored (no files)

pwd print current working directory

unmark unmark dir/file to be restored recursively in dir

unmarkdir unmark directory name only no recursion

quit quit and do not do restore

? print help

As a default no files have been selected for restore (unless you added all to the command line. If you want
to restore everything, at this point, you should enter mark *, and then done and Bacula will write the
bootstrap records to a file and request your approval to start a restore job.

If you do not enter the above mentioned mark * command, you will start with an empty slate. Now you
can simply start looking at the tree and mark particular files or directories you want restored. It is easy to
make a mistake in specifying a file to mark or unmark, and Bacula’s error handling is not perfect, so please
check your work by using the ls or dir commands to see what files are actually selected. Any selected file
has its name preceded by an asterisk.

To check what is marked or not marked, enter the count command, which displays:

128401 total files. 128401 marked to be restored.

Each of the above commands will be described in more detail in the next section. We continue with the
above example, having accepted to restore all files as Bacula set by default. On entering the done command,
Bacula prints:

Bootstrap records written to /home/kern/bacula/working/restore.bsr

The job will require the following

Volume(s) Storage(s) SD Device(s)

===

DLT-19Jul02 Tape DLT8000

DLT-04Aug02 Tape DLT8000

128401 files selected to restore.

Run Restore job

JobName: kernsrestore

Bootstrap: /home/kern/bacula/working/restore.bsr

Where: /tmp/bacula-restores

Replace: always

FileSet: Other Files

Client: Rufus

Storage: Tape

When: 2006-12-11 18:20:33

Catalog: MyCatalog

Priority: 10

OK to run? (yes/mod/no):

Please examine each of the items very carefully to make sure that they are correct. In particular, look at
Where, which tells you where in the directory structure the files will be restored, and Client, which tells
you which client will receive the files. Note that by default the Client which will receive the files is the Client
that was backed up. These items will not always be completed with the correct values depending on which
of the restore options you chose. You can change any of these default items by entering mod and responding
to the prompts.

The above assumes that you have defined a Restore Job resource in your Director’s configuration file.
Normally, you will only need one Restore Job resource definition because by its nature, restoring is a manual
operation, and using the Console interface, you will be able to modify the Restore Job to do what you want.

An example Restore Job resource definition is given below.

Returning to the above example, you should verify that the Client name is correct before running the Job.
However, you may want to modify some of the parameters of the restore job. For example, in addition to

212 Bacula Version 5.0.3

checking the Client it is wise to check that the Storage device chosen by Bacula is indeed correct. Although
the FileSet is shown, it will be ignored in restore. The restore will choose the files to be restored either by
reading the Bootstrap file, or if not specified, it will restore all files associated with the specified backup
JobId (i.e. the JobId of the Job that originally backed up the files).

Finally before running the job, please note that the default location for restoring files is not their original
locations, but rather the directory /tmp/bacula-restores. You can change this default by modifying your
bacula-dir.conf file, or you can modify it using the mod option. If you want to restore the files to their
original location, you must have Where set to nothing or to the root, i.e. /.

If you now enter yes, Bacula will run the restore Job. The Storage daemon will first request Volume
DLT-19Jul02 and after the appropriate files have been restored from that volume, it will request Volume
DLT-04Aug02.

24.2.1 Restore a pruned job using a pattern

During a restore, if all File records are pruned from the catalog for a Job, normally Bacula can restore only
all files saved. That is there is no way using the catalog to select individual files. With this new feature,
Bacula will ask if you want to specify a Regex expression for extracting only a part of the full backup.

Building directory tree for JobId(s) 1,3 ...

There were no files inserted into the tree, so file selection

is not possible.Most likely your retention policy pruned the files

Do you want to restore all the files? (yes|no): no

Regexp matching files to restore? (empty to abort): /tmp/regress/(bin|tests)/

Bootstrap records written to /tmp/regress/working/zog4-dir.restore.1.bsr

See also FileRegex bsr option for more information.

24.3 Selecting Files by Filename

If you have a small number of files to restore, and you know the filenames, you can either put the list of
filenames in a file to be read by Bacula, or you can enter the names one at a time. The filenames must
include the full path and filename. No wild cards are used.

To enter the files, after the restore, you select item number 7 from the prompt list:

To select the JobIds, you have the following choices:

1: List last 20 Jobs run

2: List Jobs where a given File is saved

3: Enter list of comma separated JobIds to select

4: Enter SQL list command

5: Select the most recent backup for a client

6: Select backup for a client before a specified time

7: Enter a list of files to restore

8: Enter a list of files to restore before a specified time

9: Find the JobIds of the most recent backup for a client

10: Find the JobIds for a backup for a client before a specified time

11: Enter a list of directories to restore for found JobIds

12: Cancel

Select item: (1-12):

which then prompts you for the client name:

Defined Clients:

Bacula Version 5.0.3 213

1: Timmy

2: Tibs

3: Rufus

Select the Client (1-3): 3

Of course, your client list will be different, and if you have only one client, it will be automatically selected.
And finally, Bacula requests you to enter a filename:

Enter filename:

At this point, you can enter the full path and filename

Enter filename: /home/kern/bacula/k/Makefile.in

Enter filename:

as you can see, it took the filename. If Bacula cannot find a copy of the file, it prints the following:

Enter filename: junk filename

No database record found for: junk filename

Enter filename:

If you want Bacula to read the filenames from a file, you simply precede the filename with a less-than symbol
(<). When you have entered all the filenames, you enter a blank line, and Bacula will write the bootstrap
file, tells you what tapes will be used, and proposes a Restore job to be run:

Enter filename:

Automatically selected Storage: DDS-4

Bootstrap records written to /home/kern/bacula/working/restore.bsr

The restore job will require the following Volumes:

test1

1 file selected to restore.

Run Restore job

JobName: kernsrestore

Bootstrap: /home/kern/bacula/working/restore.bsr

Where: /tmp/bacula-restores

Replace: always

FileSet: Other Files

Client: Rufus

Storage: DDS-4

When: 2003-09-11 10:20:53

Priority: 10

OK to run? (yes/mod/no):

It is possible to automate the selection by file by putting your list of files in say /tmp/file-list, then using
the following command:

restore client=Rufus file=</tmp/file-list

If in modifying the parameters for the Run Restore job, you find that Bacula asks you to enter a Job number,
this is because you have not yet specified either a Job number or a Bootstrap file. Simply entering zero will
allow you to continue and to select another option to be modified.

24.4 Replace Options

When restoring, you have the option to specify a Replace option. This directive determines the action to be
taken when restoring a file or directory that already exists. This directive can be set by selecting the mod
option. You will be given a list of parameters to choose from. Full details on this option can be found in the
Job Resource section of the Director documentation.

214 Bacula Version 5.0.3

24.5 Command Line Arguments

If all the above sounds complicated, you will probably agree that it really isn’t after trying it a few times.
It is possible to do everything that was shown above, with the exception of selecting the FileSet, by using
command line arguments with a single command by entering:

restore client=Rufus select current all done yes

The client=Rufus specification will automatically select Rufus as the client, the current tells Bacula
that you want to restore the system to the most current state possible, and the yes suppresses the final
yes/mod/no prompt and simply runs the restore.

The full list of possible command line arguments are:

• all – select all Files to be restored.

• select – use the tree selection method.

• done – do not prompt the user in tree mode.

• current – automatically select the most current set of backups for the specified client.

• client=xxxx – initially specifies the client from which the backup was made and the client to which
the restore will be make. See also ”restoreclient” keyword.

• restoreclient=xxxx – if the keyword is specified, then the restore is written to that client.

• jobid=nnn – specify a JobId or comma separated list of JobIds to be restored.

• before=YYYY-MM-DD HH:MM:SS – specify a date and time to which the system should be
restored. Only Jobs started before the specified date/time will be selected, and as is the case for cur-
rent Bacula will automatically find the most recent prior Full save and all Differential and Incremental
saves run before the date you specify. Note, this command is not too user friendly in that you must
specify the date/time exactly as shown.

• file=filename – specify a filename to be restored. You must specify the full path and filename.
Prefixing the entry with a less-than sign (<) will cause Bacula to assume that the filename is on your
system and contains a list of files to be restored. Bacula will thus read the list from that file. Multiple
file=xxx specifications may be specified on the command line.

• jobid=nnn – specify a JobId to be restored.

• pool=pool-name – specify a Pool name to be used for selection of Volumes when specifying options
5 and 6 (restore current system, and restore current system before given date). This permits you to
have several Pools, possibly one offsite, and to select the Pool to be used for restoring.

• where=/tmp/bacula-restore – restore files in where directory.

• yes – automatically run the restore without prompting for modifications (most useful in batch scripts).

• strip prefix=/prod – remove a part of the filename when restoring.

• add prefix=/test – add a prefix to all files when restoring (like where) (can’t be used with where=).

• add suffix=.old – add a suffix to all your files.

• regexwhere=!a.pdf!a.bkp.pdf! – do complex filename manipulation like with sed unix command.
Will overwrite other filename manipulation.

Bacula Version 5.0.3 215

24.6 Using File Relocation

24.6.1 Introduction

The where= option is simple, but not very powerful. With file relocation, Bacula can restore a file to the
same directory, but with a different name, or in an other directory without recreating the full path.

You can also do filename and path manipulations, implemented in Bacula 2.1.8 or later, such as adding a
suffix to all your files, renaming files or directories, etc. Theses options will overwrite where= option.

For example, many users use OS snapshot features so that file /home/eric/mbox will be backed up from the
directory /.snap/home/eric/mbox, which can complicate restores. If you use where=/tmp, the file will
be restored to /tmp/.snap/home/eric/mbox and you will have to move the file to /home/eric/mbox.bkp

by hand.

However, case, you could use the strip prefix=/.snap and add suffix=.bkp options and Bacula will
restore the file to its original location – that is /home/eric/mbox.

To use this feature, there are command line options as described in the restore section of this manual; you
can modify your restore job before running it; or you can add options to your restore job in as described in
bacula-dir.conf.

Parameters to modify:

1: Level

2: Storage

...

10: File Relocation

...

Select parameter to modify (1-12):

This will replace your current Where value

1: Strip prefix

2: Add prefix

3: Add file suffix

4: Enter a regexp

5: Test filename manipulation

6: Use this ?

Select parameter to modify (1-6):

24.6.2 RegexWhere Format

The format is very close to that used by sed or Perl (s/replace this/by that/) operator. A valid
regexwhere expression has three fields :

• a search expression (with optionnal submatch)

• a replacement expression (with optionnal back references $1 to $9)

• a set of search options (only case-insensitive “i” at this time)

Each field is delimited by a separator specified by the user as the first character of the expression. The
separator can be one of the following:

<separator-keyword> = / ! ; % : , ~ # = &

You can use several expressions separated by a commas.

216 Bacula Version 5.0.3

Examples

Orignal filename New filename RegexWhere Comments

c:/system.ini c:/system.old.ini /.ini$/.old.ini/ $ matches end of name
/prod/u01/pdata/ /rect/u01/rdata /prod/rect/,/pdata/rdata/ uses two regexp
/prod/u01/pdata/ /rect/u01/rdata !/prod/!/rect/!,/pdata/rdata/ use ! as separator

C:/WINNT d:/WINNT /c:/d:/i case insensitive pattern match

24.7 Restoring Directory Attributes

Depending how you do the restore, you may or may not get the directory entries back to their original state.
Here are a few of the problems you can encounter, and for same machine restores, how to avoid them.

• You backed up on one machine and are restoring to another that is either a different OS or doesn’t
have the same users/groups defined. Bacula does the best it can in these situations. Note, Bacula has
saved the user/groups in numeric form, which means on a different machine, they may map to different
user/group names.

• You are restoring into a directory that is already created and has file creation restrictions. Bacula tries
to reset everything but without walking up the full chain of directories and modifying them all during
the restore, which Bacula does and will not do, getting permissions back correctly in this situation
depends to a large extent on your OS.

• You are doing a recursive restore of a directory tree. In this case Bacula will restore a file before
restoring the file’s parent directory entry. In the process of restoring the file Bacula will create the
parent directory with open permissions and ownership of the file being restored. Then when Bacula tries
to restore the parent directory Bacula sees that it already exists (Similar to the previous situation). If
you had set the Restore job’s ”Replace” property to ”never” then Bacula will not change the directory’s
permissions and ownerships to match what it backed up, you should also notice that the actual number
of files restored is less then the expected number. If you had set the Restore job’s ”Replace” property to
”always” then Bacula will change the Directory’s ownership and permissions to match what it backed
up, also the actual number of files restored should be equal to the expected number.

• You selected one or more files in a directory, but did not select the directory entry to be restored.
In that case, if the directory is not on disk Bacula simply creates the directory with some default
attributes which may not be the same as the original. If you do not select a directory and all its
contents to be restored, you can still select items within the directory to be restored by individually
marking those files, but in that case, you should individually use the ”markdir” command to select all
higher level directory entries (one at a time) to be restored if you want the directory entries properly
restored.

• The bextract program does not restore access control lists (ACLs) to Unix machines.

24.8 Restoring on Windows

If you are restoring on WinNT/2K/XP systems, Bacula will restore the files with the original ownerships and
permissions as would be expected. This is also true if you are restoring those files to an alternate directory
(using the Where option in restore). However, if the alternate directory does not already exist, the Bacula
File daemon (Client) will try to create it. In some cases, it may not create the directories, and if it does since
the File daemon runs under the SYSTEM account, the directory will be created with SYSTEM ownership
and permissions. In this case, you may have problems accessing the newly restored files.

To avoid this problem, you should create any alternate directory before doing the restore. Bacula will not
change the ownership and permissions of the directory if it is already created as long as it is not one of the
directories being restored (i.e. written to tape).

Bacula Version 5.0.3 217

The default restore location is /tmp/bacula-restores/ and if you are restoring from drive E:, the default
will be /tmp/bacula-restores/e/, so you should ensure that this directory exists before doing the restore,
or use the mod option to select a different where directory that does exist.

Some users have experienced problems restoring files that participate in the Active Directory. They also
report that changing the userid under which Bacula (bacula-fd.exe) runs, from SYSTEM to a Domain Admin
userid, resolves the problem.

24.9 Restoring Files Can Be Slow

Restoring files is generally much slower than backing them up for several reasons. The first is that during a
backup the tape is normally already positioned and Bacula only needs to write. On the other hand, because
restoring files is done so rarely, Bacula keeps only the start file and block on the tape for the whole job rather
than on a file by file basis which would use quite a lot of space in the catalog.

Bacula will forward space to the correct file mark on the tape for the Job, then forward space to the correct
block, and finally sequentially read each record until it gets to the correct one(s) for the file or files you want
to restore. Once the desired files are restored, Bacula will stop reading the tape.

Finally, instead of just reading a file for backup, during the restore, Bacula must create the file, and the
operating system must allocate disk space for the file as Bacula is restoring it.

For all the above reasons the restore process is generally much slower than backing up (sometimes it takes
three times as long).

24.10 Problems Restoring Files

The most frequent problems users have restoring files are error messages such as:

04-Jan 00:33 z217-sd: RestoreFiles.2005-01-04_00.31.04 Error:

block.c:868 Volume data error at 20:0! Short block of 512 bytes on

device /dev/tape discarded.

or

04-Jan 00:33 z217-sd: RestoreFiles.2005-01-04_00.31.04 Error:

block.c:264 Volume data error at 20:0! Wanted ID: "BB02", got ".".

Buffer discarded.

Both these kinds of messages indicate that you were probably running your tape drive in fixed block mode
rather than variable block mode. Fixed block mode will work with any program that reads tapes sequentially
such as tar, but Bacula repositions the tape on a block basis when restoring files because this will speed up
the restore by orders of magnitude when only a few files are being restored. There are several ways that you
can attempt to recover from this unfortunate situation.

Try the following things, each separately, and reset your Device resource to what it is now after each
individual test:

1. Set ”Block Positioning = no” in your Device resource and try the restore. This is a new directive and
untested.

2. Set ”Minimum Block Size = 512” and ”Maximum Block Size = 512” and try the restore. If you are
able to determine the block size your drive was previously using, you should try that size if 512 does
not work. This is a really horrible solution, and it is not at all recommended to continue backing up
your data without correcting this condition. Please see the Tape Testing chapter for more on this.

218 Bacula Version 5.0.3

3. Try editing the restore.bsr file at the Run xxx yes/mod/no prompt before starting the restore job and
remove all the VolBlock statements. These are what causes Bacula to reposition the tape, and where
problems occur if you have a fixed block size set for your drive. The VolFile commands also cause
repositioning, but this will work regardless of the block size.

4. Use bextract to extract the files you want – it reads the Volume sequentially if you use the include list
feature, or if you use a .bsr file, but remove all the VolBlock statements after the .bsr file is created
(at the Run yes/mod/no) prompt but before you start the restore.

24.11 Restore Errors

There are a number of reasons why there may be restore errors or warning messages. Some of the more
common ones are:

file count mismatch This can occur for the following reasons:

• You requested Bacula not to overwrite existing or newer files.

• A Bacula miscount of files/directories. This is an on-going problem due to the complications of
directories, soft/hard link, and such. Simply check that all the files you wanted were actually
restored.

file size error When Bacula restores files, it checks that the size of the restored file is the same as the file
status data it saved when starting the backup of the file. If the sizes do not agree, Bacula will print
an error message. This size mismatch most often occurs because the file was being written as Bacula
backed up the file. In this case, the size that Bacula restored will be greater than the status size. This
often happens with log files.

If the restored size is smaller, then you should be concerned about a possible tape error and check the
Bacula output as well as your system logs.

24.12 Example Restore Job Resource

Job {

Name = "RestoreFiles"

Type = Restore

Client = Any-client

FileSet = "Any-FileSet"

Storage = Any-storage

Where = /tmp/bacula-restores

Messages = Standard

Pool = Default

}

If Where is not specified, the default location for restoring files will be their original locations.

24.13 File Selection Commands

After you have selected the Jobs to be restored and Bacula has created the in-memory directory tree, you
will enter file selection mode as indicated by the dollar sign ($) prompt. While in this mode, you may use
the commands listed above. The basic idea is to move up and down the in memory directory structure with
the cd command much as you normally do on the system. Once you are in a directory, you may select the
files that you want restored. As a default no files are marked to be restored. If you wish to start with all
files, simply enter: cd / and mark *. Otherwise proceed to select the files you wish to restore by marking
them with the mark command. The available commands are:

Bacula Version 5.0.3 219

cd The cd command changes the current directory to the argument specified. It operates much like the
Unix cd command. Wildcard specifications are not permitted.

Note, on Windows systems, the various drives (c:, d:, ...) are treated like a directory within the file
tree while in the file selection mode. As a consequence, you must do a cd c: or possibly in some cases
a cd C: (note upper case) to get down to the first directory.

dir The dir command is similar to the ls command, except that it prints it in long format (all details).
This command can be a bit slower than the ls command because it must access the catalog database
for the detailed information for each file.

estimate The estimate command prints a summary of the total files in the tree, how many are marked to
be restored, and an estimate of the number of bytes to be restored. This can be useful if you are short
on disk space on the machine where the files will be restored.

find The find command accepts one or more arguments and displays all files in the tree that match that
argument. The argument may have wildcards. It is somewhat similar to the Unix command find /
-name arg.

ls The ls command produces a listing of all the files contained in the current directory much like the Unix
ls command. You may specify an argument containing wildcards, in which case only those files will be
listed.

Any file that is marked to be restored will have its name preceded by an asterisk (*). Directory names
will be terminated with a forward slash (/) to distinguish them from filenames.

lsmark The lsmark command is the same as the ls except that it will print only those files marked for
extraction. The other distinction is that it will recursively descend into any directory selected.

mark The mark command allows you to mark files to be restored. It takes a single argument which is the
filename or directory name in the current directory to be marked for extraction. The argument may
be a wildcard specification, in which case all files that match in the current directory are marked to
be restored. If the argument matches a directory rather than a file, then the directory and all the files
contained in that directory (recursively) are marked to be restored. Any marked file will have its name
preceded with an asterisk (*) in the output produced by the ls or dir commands. Note, supplying a
full path on the mark command does not work as expected to select a file or directory in the current
directory. Also, the mark command works on the current and lower directories but does not touch
higher level directories.

After executing the mark command, it will print a brief summary:

No files marked.

If no files were marked, or:

nn files marked.

if some files are marked.

unmark The unmark is identical to the mark command, except that it unmarks the specified file or files
so that they will not be restored. Note: the unmark command works from the current directory, so
it does not unmark any files at a higher level. First do a cd / before the unmark * command if you
want to unmark everything.

pwd The pwd command prints the current working directory. It accepts no arguments.

count The count command prints the total files in the directory tree and the number of files marked to be
restored.

done This command terminates file selection mode.

exit This command terminates file selection mode (the same as done).

quit This command terminates the file selection and does not run the restore job.

help This command prints a summary of the commands available.

? This command is the same as the help command.

220 Bacula Version 5.0.3

24.14 Restoring When Things Go Wrong

This and the following sections will try to present a few of the kinds of problems that can come up making
restoring more difficult. We will try to provide a few ideas how to get out of these problem situations. In
addition to what is presented here, there is more specific information on restoring a Client and your Server
in the Disaster Recovery Using Bacula chapter of this manual.

Problem My database is broken.

Solution For SQLite, use the vacuum command to try to fix the database. For either MySQL or Post-
greSQL, see the vendor’s documentation. They have specific tools that check and repair databases, see
the database repair sections of this manual for links to vendor information.

Assuming the above does not resolve the problem, you will need to restore or rebuild your catalog.
Note, if it is a matter of some inconsistencies in the Bacula tables rather than a broken database,
then running dbcheck might help, but you will need to ensure that your database indexes are properly
setup. Please see the Database Performance Issues sections of this manual for more details.

Problem How do I restore my catalog?

Solution with a Catalog backup If you have backed up your database nightly (as you should) and you
have made a bootstrap file, you can immediately load back your database (or the ASCII SQL output).
Make a copy of your current database, then re-initialize it, by running the following scripts:

./drop_bacula_tables

./make_bacula_tables

After re-initializing the database, you should be able to run Bacula. If you now try to use the restore
command, it will not work because the database will be empty. However, you can manually run a
restore job and specify your bootstrap file. You do so by entering the bf run command in the console
and selecting the restore job. If you are using the default bacula-dir.conf, this Job will be named
RestoreFiles. Most likely it will prompt you with something such as:

Run Restore job

JobName: RestoreFiles

Bootstrap: /home/kern/bacula/working/restore.bsr

Where: /tmp/bacula-restores

Replace: always

FileSet: Full Set

Client: rufus-fd

Storage: File

When: 2005-07-10 17:33:40

Catalog: MyCatalog

Priority: 10

OK to run? (yes/mod/no):

A number of the items will be different in your case. What you want to do is: to use the mod option
to change the Bootstrap to point to your saved bootstrap file; and to make sure all the other items
such as Client, Storage, Catalog, and Where are correct. The FileSet is not used when you specify a
bootstrap file. Once you have set all the correct values, run the Job and it will restore the backup of
your database, which is most likely an ASCII dump.

You will then need to follow the instructions for your database type to recreate the database from the
ASCII backup file. See the Catalog Maintenance chapter of this manual for examples of the command
needed to restore a database from an ASCII dump (they are shown in the Compacting Your XXX
Database sections).

Also, please note that after you restore your database from an ASCII backup, you do NOT want to do
a make bacula tables command, or you will probably erase your newly restored database tables.

Solution with a Job listing If you did save your database but did not make a bootstrap file, then recov-
ering the database is more difficult. You will probably need to use bextract to extract the backup copy.
First you should locate the listing of the job report from the last catalog backup. It has important
information that will allow you to quickly find your database file. For example, in the job report for
the CatalogBackup shown below, the critical items are the Volume name(s), the Volume Session Id
and the Volume Session Time. If you know those, you can easily restore your Catalog.

Bacula Version 5.0.3 221

22-Apr 10:22 HeadMan: Start Backup JobId 7510,

Job=CatalogBackup.2005-04-22_01.10.0

22-Apr 10:23 HeadMan: Bacula 1.37.14 (21Apr05): 22-Apr-2005 10:23:06

JobId: 7510

Job: CatalogBackup.2005-04-22_01.10.00

Backup Level: Full

Client: Polymatou

FileSet: "CatalogFile" 2003-04-10 01:24:01

Pool: "Default"

Storage: "DLTDrive"

Start time: 22-Apr-2005 10:21:00

End time: 22-Apr-2005 10:23:06

FD Files Written: 1

SD Files Written: 1

FD Bytes Written: 210,739,395

SD Bytes Written: 210,739,521

Rate: 1672.5 KB/s

Software Compression: None

Volume name(s): DLT-22Apr05

Volume Session Id: 11

Volume Session Time: 1114075126

Last Volume Bytes: 1,428,240,465

Non-fatal FD errors: 0

SD Errors: 0

FD termination status: OK

SD termination status: OK

Termination: Backup OK

From the above information, you can manually create a bootstrap file, and then follow the instructions
given above for restoring your database. A reconstructed bootstrap file for the above backup Job would
look like the following:

Volume="DLT-22Apr05"

VolSessionId=11

VolSessionTime=1114075126

FileIndex=1-1

Where we have inserted the Volume name, Volume Session Id, and Volume Session Time that corre-
spond to the values in the job report. We’ve also used a FileIndex of one, which will always be the
case providing that there was only one file backed up in the job.

The disadvantage of this bootstrap file compared to what is created when you ask for one to be written,
is that there is no File and Block specified, so the restore code must search all data in the Volume
to find the requested file. A fully specified bootstrap file would have the File and Blocks specified as
follows:

Volume="DLT-22Apr05"

VolSessionId=11

VolSessionTime=1114075126

VolFile=118-118

VolBlock=0-4053

FileIndex=1-1

Once you have restored the ASCII dump of the database, you will then to follow the instructions for
your database type to recreate the database from the ASCII backup file. See the Catalog Maintenance
chapter of this manual for examples of the command needed to restore a database from an ASCII
dump (they are shown in the Compacting Your XXX Database sections).

Also, please note that after you restore your database from an ASCII backup, you do NOT want to do
a make bacula tables command, or you will probably erase your newly restored database tables.

Solution without a Job Listing If you do not have a job listing, then it is a bit more difficult. Either
you use the bscan program to scan the contents of your tape into a database, which can be very time
consuming depending on the size of the tape, or you can use the bls program to list everything on the
tape, and reconstruct a bootstrap file from the bls listing for the file or files you want following the
instructions given above.

There is a specific example of how to use bls below.

Problem I try to restore the last known good full backup by specifying item 3 on the restore menu then
the JobId to restore. Bacula then reports:

222 Bacula Version 5.0.3

1 Job 0 Files

and restores nothing.

Solution Most likely the File records were pruned from the database either due to the File Retention period
expiring or by explicitly purging the Job. By using the ”llist jobid=nn” command, you can obtain all
the important information about the job:

llist jobid=120

JobId: 120

Job: save.2005-12-05_18.27.33

Job.Name: save

PurgedFiles: 0

Type: B

Level: F

Job.ClientId: 1

Client.Name: Rufus

JobStatus: T

SchedTime: 2005-12-05 18:27:32

StartTime: 2005-12-05 18:27:35

EndTime: 2005-12-05 18:27:37

JobTDate: 1133803657

VolSessionId: 1

VolSessionTime: 1133803624

JobFiles: 236

JobErrors: 0

JobMissingFiles: 0

Job.PoolId: 4

Pool.Name: Full

Job.FileSetId: 1

FileSet.FileSet: BackupSet

Then you can find the Volume(s) used by doing:

sql

select VolumeName from JobMedia,Media where JobId=1 and JobMedia.MediaId=Media.MediaId;

Finally, you can create a bootstrap file as described in the previous problem above using this informa-
tion.

If you are using Bacula version 1.38.0 or greater, when you select item 3 from the menu and enter the
JobId, it will ask you if you would like to restore all the files in the job, and it will collect the above
information and write the bootstrap file for you.

Problem You don’t have a bootstrap file, and you don’t have the Job report for the backup of your database,
but you did backup the database, and you know the Volume to which it was backed up.

Solution Either bscan the tape (see below for bscanning), or better use bls to find where it is on the tape,
then use bextract to restore the database. For example,

./bls -j -V DLT-22Apr05 /dev/nst0

Might produce the following output:

bls: butil.c:258 Using device: "/dev/nst0" for reading.

21-Jul 18:34 bls: Ready to read from volume "DLT-22Apr05" on device "DLTDrive"

(/dev/nst0).

Volume Record: File:blk=0:0 SessId=11 SessTime=1114075126 JobId=0 DataLen=164

...

Begin Job Session Record: File:blk=118:0 SessId=11 SessTime=1114075126

JobId=7510

Job=CatalogBackup.2005-04-22_01.10.0 Date=22-Apr-2005 10:21:00 Level=F Type=B

End Job Session Record: File:blk=118:4053 SessId=11 SessTime=1114075126

JobId=7510

Date=22-Apr-2005 10:23:06 Level=F Type=B Files=1 Bytes=210,739,395 Errors=0

Status=T

...

21-Jul 18:34 bls: End of Volume at file 201 on device "DLTDrive" (/dev/nst0),

Volume "DLT-22Apr05"

21-Jul 18:34 bls: End of all volumes.

Bacula Version 5.0.3 223

Of course, there will be many more records printed, but we have indicated the essential lines of output.
From the information on the Begin Job and End Job Session Records, you can reconstruct a bootstrap
file such as the one shown above.

Problem How can I find where a file is stored.

Solution Normally, it is not necessary, you just use the restore command to restore the most recently
saved version (menu option 5), or a version saved before a given date (menu option 8). If you know
the JobId of the job in which it was saved, you can use menu option 3 to enter that JobId.

If you would like to know the JobId where a file was saved, select restore menu option 2.

You can also use the query command to find information such as:

*query

Available queries:

1: List up to 20 places where a File is saved regardless of the

directory

2: List where the most recent copies of a file are saved

3: List last 20 Full Backups for a Client

4: List all backups for a Client after a specified time

5: List all backups for a Client

6: List Volume Attributes for a selected Volume

7: List Volumes used by selected JobId

8: List Volumes to Restore All Files

9: List Pool Attributes for a selected Pool

10: List total files/bytes by Job

11: List total files/bytes by Volume

12: List Files for a selected JobId

13: List Jobs stored on a selected MediaId

14: List Jobs stored for a given Volume name

15: List Volumes Bacula thinks are in changer

16: List Volumes likely to need replacement from age or errors

Choose a query (1-16):

Problem I didn’t backup my database. What do I do now?

Solution This is probably the worst of all cases, and you will probably have to re-create your database from
scratch and then bscan in all your Volumes, which is a very long, painful, and inexact process.

There are basically three steps to take:

1. Ensure that your SQL server is running (MySQL or PostgreSQL) and that the Bacula database
(normally bacula) exists. See the Installation chapter of the manual.

2. Ensure that the Bacula databases are created. This is also described at the above link.

3. Start and stop the Bacula Director using the propriate bacula-dir.conf file so that it can create the
Client and Storage records which are not stored on the Volumes. Without these records, scanning
is unable to connect the Job records to the proper client.

When the above is complete, you can begin bscanning your Volumes. Please see the bscan section of
the Volume Utility Tools of this chapter for more details.

224 Bacula Version 5.0.3

Chapter 25

Automatic Volume Recycling

By default, once Bacula starts writing a Volume, it can append to the volume, but it will not overwrite the
existing data thus destroying it. However when Bacula recycles a Volume, the Volume becomes available
for being reused, and Bacula can at some later time overwrite the previous contents of that Volume. Thus
all previous data will be lost. If the Volume is a tape, the tape will be rewritten from the beginning. If the
Volume is a disk file, the file will be truncated before being rewritten.

You may not want Bacula to automatically recycle (reuse) tapes. This would require a large number of tapes
though, and in such a case, it is possible to manually recycle tapes. For more on manual recycling, see the
section entitled Manually Recycling Volumes below in this chapter.

Most people prefer to have a Pool of tapes that are used for daily backups and recycled once a week, another
Pool of tapes that are used for Full backups once a week and recycled monthly, and finally a Pool of tapes
that are used once a month and recycled after a year or two. With a scheme like this, the number of tapes
in your pool or pools remains constant.

By properly defining your Volume Pools with appropriate Retention periods, Bacula can manage the recycling
(such as defined above) automatically.

Automatic recycling of Volumes is controlled by four records in the Pool resource definition in the Director’s
configuration file. These four records are:

• AutoPrune = yes

• VolumeRetention = <time>

• Recycle = yes

• RecyclePool = <APool> (This require bacula 2.1.4 or greater)

The above three directives are all you need assuming that you fill each of your Volumes then wait the Volume
Retention period before reusing them. If you want Bacula to stop using a Volume and recycle it before it is
full, you will need to use one or more additional directives such as:

• Use Volume Once = yes

• Volume Use Duration = ttt

• Maximum Volume Jobs = nnn

• Maximum Volume Bytes = mmm

Please see below and the Basic Volume Management chapter of this manual for more complete examples.

225

226 Bacula Version 5.0.3

Automatic recycling of Volumes is performed by Bacula only when it wants a new Volume and no appendable
Volumes are available in the Pool. It will then search the Pool for any Volumes with the Recycle flag set
and the Volume Status is Purged. At that point, it will choose the oldest purged volume and recycle it.

If there are no volumes with Status Purged, then the recycling occurs in two steps: The first is that the
Catalog for a Volume must be pruned of all Jobs (i.e. Purged). Files contained on that Volume, and the
second step is the actual recycling of the Volume. Only Volumes marked Full or Used will be considerd for
pruning. The Volume will be purged if the VolumeRetention period has expired. When a Volume is marked
as Purged, it means that no Catalog records reference that Volume, and the Volume can be recycled. Until
recycling actually occurs, the Volume data remains intact. If no Volumes can be found for recycling for any
of the reasons stated above, Bacula will request operator intervention (i.e. it will ask you to label a new
volume).

A key point mentioned above, that can be a source of frustration, is that Bacula will only recycle purged
Volumes if there is no other appendable Volume available, otherwise, it will always write to an appendable
Volume before recycling even if there are Volume marked as Purged. This preserves your data as long as
possible. So, if you wish to ”force” Bacula to use a purged Volume, you must first ensure that no other
Volume in the Pool is marked Append. If necessary, you can manually set a volume to Full. The reason
for this is that Bacula wants to preserve the data on your old tapes (even though purged from the catalog)
as long as absolutely possible before overwriting it. There are also a number of directives such as Volume
Use Duration that will automatically mark a volume as Used and thus no longer appendable.

25.1 Automatic Pruning

As Bacula writes files to tape, it keeps a list of files, jobs, and volumes in a database called the catalog. Among
other things, the database helps Bacula to decide which files to back up in an incremental or differential
backup, and helps you locate files on past backups when you want to restore something. However, the catalog
will grow larger and larger as time goes on, and eventually it can become unacceptably large.

Bacula’s process for removing entries from the catalog is called Pruning. The default is Automatic Pruning,
which means that once an entry reaches a certain age (e.g. 30 days old) it is removed from the catalog. Once
a job has been pruned, you can still restore it from the backup tape, but one additional step is required:
scanning the volume with bscan. The alternative to Automatic Pruning is Manual Pruning, in which you
explicitly tell Bacula to erase the catalog entries for a volume. You’d usually do this when you want to reuse
a Bacula volume, because there’s no point in keeping a list of files that USED TO BE on a tape. Or, if the
catalog is starting to get too big, you could prune the oldest jobs to save space. Manual pruning is done
with the prune command in the console. (thanks to Bryce Denney for the above explanation).

25.2 Pruning Directives

There are three pruning durations. All apply to catalog database records and not to the actual data in a
Volume. The pruning (or retention) durations are for: Volumes (Media records), Jobs (Job records), and
Files (File records). The durations inter-depend a bit because if Bacula prunes a Volume, it automatically
removes all the Job records, and all the File records. Also when a Job record is pruned, all the File records
for that Job are also pruned (deleted) from the catalog.

Having the File records in the database means that you can examine all the files backed up for a particular
Job. They take the most space in the catalog (probably 90-95% of the total). When the File records are
pruned, the Job records can remain, and you can still examine what Jobs ran, but not the details of the Files
backed up. In addition, without the File records, you cannot use the Console restore command to restore
the files.

When a Job record is pruned, the Volume (Media record) for that Job can still remain in the database, and
if you do a ”list volumes”, you will see the volume information, but the Job records (and its File records)
will no longer be available.

In each case, pruning removes information about where older files are, but it also prevents the catalog from

Bacula Version 5.0.3 227

growing to be too large. You choose the retention periods in function of how many files you are backing up
and the time periods you want to keep those records online, and the size of the database. You can always
re-insert the records (with 98% of the original data) by using ”bscan” to scan in a whole Volume or any part
of the volume that you want.

By setting AutoPrune to yes you will permit Bacula to automatically prune all Volumes in the Pool when
a Job needs another Volume. Volume pruning means removing records from the catalog. It does not shrink
the size of the Volume or affect the Volume data until the Volume gets overwritten. When a Job requests
another volume and there are no Volumes with Volume Status Append available, Bacula will begin volume
pruning. This means that all Jobs that are older than the VolumeRetention period will be pruned from
every Volume that has Volume Status Full or Used and has Recycle set to yes. Pruning consists of deleting
the corresponding Job, File, and JobMedia records from the catalog database. No change to the physical
data on the Volume occurs during the pruning process. When all files are pruned from a Volume (i.e. no
records in the catalog), the Volume will be marked as Purged implying that no Jobs remain on the volume.
The Pool records that control the pruning are described below.

AutoPrune = <yes—no> If AutoPrune is set to yes (default), Bacula will automatically apply the
Volume retention period when running a Job and it needs a new Volume but no appendable volumes
are available. At that point, Bacula will prune all Volumes that can be pruned (i.e. AutoPrune set)
in an attempt to find a usable volume. If during the autoprune, all files are pruned from the Volume,
it will be marked with VolStatus Purged. The default is yes. Note, that although the File and
Job records may be pruned from the catalog, a Volume will be marked Purged (and hence ready for
recycling) if the Volume status is Append, Full, Used, or Error. If the Volume has another status, such
as Archive, Read-Only, Disabled, Busy, or Cleaning, the Volume status will not be changed to Purged.

Volume Retention = <time-period-specification> The Volume Retention record defines the length
of time that Bacula will guarantee that the Volume is not reused counting from the time the last job
stored on the Volume terminated. A key point is that this time period is not even considered as long
at the Volume remains appendable. The Volume Retention period count down begins only when the
Append status has been changed to some othe status (Full, Used, Purged, ...).

When this time period expires, and if AutoPrune is set to yes, and a new Volume is needed, but
no appendable Volume is available, Bacula will prune (remove) Job records that are older than the
specified Volume Retention period.

The Volume Retention period takes precedence over any Job Retention period you have specified in the
Client resource. It should also be noted, that the Volume Retention period is obtained by reading the
Catalog Database Media record rather than the Pool resource record. This means that if you change
the VolumeRetention in the Pool resource record, you must ensure that the corresponding change is
made in the catalog by using the update pool command. Doing so will insure that any new Volumes
will be created with the changed Volume Retention period. Any existing Volumes will have their own
copy of the Volume Retention period that can only be changed on a Volume by Volume basis using
the update volume command.

When all file catalog entries are removed from the volume, its VolStatus is set to Purged. The files
remain physically on the Volume until the volume is overwritten.

Retention periods are specified in seconds, minutes, hours, days, weeks, months, quarters, or years on
the record. See the Configuration chapter of this manual for additional details of time specification.

The default is 1 year.

Recycle = <yes—no> This statement tells Bacula whether or not the particular Volume can be recycled
(i.e. rewritten). If Recycle is set to no (the default), then even if Bacula prunes all the Jobs on the
volume and it is marked Purged, it will not consider the tape for recycling. If Recycle is set to yes
and all Jobs have been pruned, the volume status will be set to Purged and the volume may then be
reused when another volume is needed. If the volume is reused, it is relabeled with the same Volume
Name, however all previous data will be lost.

It is also possible to ”force” pruning of all Volumes in the Pool associated with a Job by adding Prune
Files = yes to the Job resource.

228 Bacula Version 5.0.3

25.3 Recycling Algorithm

After all Volumes of a Pool have been pruned (as mentioned above, this happens when a Job needs a new
Volume and no appendable Volumes are available), Bacula will look for the oldest Volume that is Purged
(all Jobs and Files expired), and if the Recycle flag is on (Recycle=yes) for that Volume, Bacula will relabel
it and write new data on it.

As mentioned above, there are two key points for getting a Volume to be recycled. First, the Volume must
no longer be marked Append (there are a number of directives to automatically make this change), and
second since the last write on the Volume, one or more of the Retention periods must have expired so that
there are no more catalog backup job records that reference that Volume. Once both those conditions are
satisfied, the volume can be marked Purged and hence recycled.

The full algorithm that Bacula uses when it needs a new Volume is:

The algorithm described below assumes that AutoPrune is enabled, that Recycling is turned on, and that
you have defined appropriate Retention periods, or used the defaults for all these items.

• If the request is for an Autochanger device, look only for Volumes in the Autochanger (i.e. with
InChanger set and that have the correct Storage device).

• Search the Pool for a Volume with VolStatus=Append (if there is more than one, the Volume with the
oldest date last written is chosen. If two have the same date then the one with the lowest MediaId is
chosen).

• Search the Pool for a Volume with VolStatus=Recycle and the InChanger flag is set true (if there is
more than one, the Volume with the oldest date last written is chosen. If two have the same date then
the one with the lowest MediaId is chosen).

• Try recycling any purged Volumes.

• Prune volumes applying Volume retention period (Volumes with VolStatus Full, Used, or Append are
pruned). Note, even if all the File and Job records are pruned from a Volume, the Volume will not be
marked Purged until the Volume retention period expires.

• Search the Pool for a Volume with VolStatus=Purged

• If a Pool named ”Scratch” exists, search for a Volume and if found move it to the current Pool for
the Job and use it. Note, when the Scratch Volume is moved into the current Pool, the basic Pool
defaults are applied as if it is a newly labeled Volume (equivalent to an update volume from pool
command).

• If we were looking for Volumes in the Autochanger, go back to step 2 above, but this time, look for
any Volume whether or not it is in the Autochanger.

• Attempt to create a new Volume if automatic labeling enabled If Python is enabled, a Python NewVol-
ume event is generated before the Label Format directve is used. If the maximum number of Volumes
specified for the pool is reached, a new Volume will not be created.

• Prune the oldest Volume if RecycleOldestVolume=yes (the Volume with the oldest LastWritten date
and VolStatus equal to Full, Recycle, Purged, Used, or Append is chosen). This record ensures that
all retention periods are properly respected.

• Purge the oldest Volume if PurgeOldestVolume=yes (the Volume with the oldest LastWritten date
and VolStatus equal to Full, Recycle, Purged, Used, or Append is chosen). We strongly recommend
against the use of PurgeOldestVolume as it can quite easily lead to loss of current backup data.

• Give up and ask operator.

The above occurs when Bacula has finished writing a Volume or when no Volume is present in the drive.

On the other hand, if you have inserted a different Volume after the last job, and Bacula recognizes the
Volume as valid, it will request authorization from the Director to use this Volume. In this case, if you have

Bacula Version 5.0.3 229

set Recycle Current Volume = yes and the Volume is marked as Used or Full, Bacula will prune the
volume and if all jobs were removed during the pruning (respecting the retention periods), the Volume will
be recycled and used.

The recycling algorithm in this case is:

• If the VolStatus is Append or Recycle is set, the volume will be used.

• If Recycle Current Volume is set and the volume is marked Full or Used, Bacula will prune the
volume (applying the retention period). If all Jobs are pruned from the volume, it will be recycled.

This permits users to manually change the Volume every day and load tapes in an order different from what
is in the catalog, and if the volume does not contain a current copy of your backup data, it will be used.

A few points from Alan Brown to keep in mind:

1. If a pool doesn’t have maximum volumes defined then Bacula will prefer to demand new volumes over
forcibly purging older volumes.

2. If volumes become free through pruning and the Volume retention period has expired, then they get
marked as ”purged” and are immediately available for recycling - these will be used in preference to
creating new volumes.

3. If the Job, File, and Volume retention periods are different, then it’s common to see a tape with no
files or jobs listed in the database, but which is still not marked as ”purged”.

25.4 Recycle Status

Each Volume inherits the Recycle status (yes or no) from the Pool resource record when the Media record
is created (normally when the Volume is labeled). This Recycle status is stored in the Media record of the
Catalog. Using the Console program, you may subsequently change the Recycle status for each Volume. For
example in the following output from list volumes:

+----------+-------+--------+---------+------------+--------+-----+

| VolumeNa | Media | VolSta | VolByte | LastWritte | VolRet | Rec |

+----------+-------+--------+---------+------------+--------+-----+

| File0001 | File | Full | 4190055 | 2002-05-25 | 14400 | 1 |

| File0002 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0003 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0004 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0005 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0006 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0007 | File | Purged | 1896466 | 2002-05-26 | 14400 | 1 |

+----------+-------+--------+---------+------------+--------+-----+

all the volumes are marked as recyclable, and the last Volume, File0007 has been purged, so it may be
immediately recycled. The other volumes are all marked recyclable and when their Volume Retention period
(14400 seconds or four hours) expires, they will be eligible for pruning, and possibly recycling. Even though
Volume File0007 has been purged, all the data on the Volume is still recoverable. A purged Volume simply
means that there are no entries in the Catalog. Even if the Volume Status is changed to Recycle, the data
on the Volume will be recoverable. The data is lost only when the Volume is re-labeled and re-written.

To modify Volume File0001 so that it cannot be recycled, you use the update volume pool=File com-
mand in the console program, or simply update and Bacula will prompt you for the information.

+----------+------+-------+---------+-------------+-------+-----+

| VolumeNa | Media| VolSta| VolByte | LastWritten | VolRet| Rec |

+----------+------+-------+---------+-------------+-------+-----+

| File0001 | File | Full | 4190055 | 2002-05-25 | 14400 | 0 |

230 Bacula Version 5.0.3

| File0002 | File | Full | 1897236 | 2002-05-26 | 14400 | 1 |

| File0003 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0004 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0005 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0006 | File | Full | 1896460 | 2002-05-26 | 14400 | 1 |

| File0007 | File | Purged| 1896466 | 2002-05-26 | 14400 | 1 |

+----------+------+-------+---------+-------------+-------+-----+

In this case, File0001 will never be automatically recycled. The same effect can be achieved by setting the
Volume Status to Read-Only.

As you have noted, the Volume Status (VolStatus) column in the catalog database contains the current
status of the Volume, which is normally maintained automatically by Bacula. To give you an idea of some
of the values it can take during the life cycle of a Volume, here is a picture created by Arno Lehmann:

A typical volume life cycle is like this:

because job count or size limit exceeded

Append --> Used

^ |

| First Job writes to Retention time passed |

| the volume and recycling takes |

| place |

| v

Recycled <-------------------------------------- Purged

Volume is selected for reuse

25.5 Making Bacula Use a Single Tape

Most people will want Bacula to fill a tape and when it is full, a new tape will be mounted, and so on.
However, as an extreme example, it is possible for Bacula to write on a single tape, and every night to
rewrite it. To get this to work, you must do two things: first, set the VolumeRetention to less than your
save period (one day), and the second item is to make Bacula mark the tape as full after using it once. This
is done using UseVolumeOnce = yes. If this latter record is not used and the tape is not full after the
first time it is written, Bacula will simply append to the tape and eventually request another volume. Using
the tape only once, forces the tape to be marked Full after each use, and the next time Bacula runs, it will
recycle the tape.

An example Pool resource that does this is:

Pool {

Name = DDS-4

Use Volume Once = yes

Pool Type = Backup

AutoPrune = yes

VolumeRetention = 12h # expire after 12 hours

Recycle = yes

}

25.6 Daily, Weekly, Monthly Tape Usage Example

This example is meant to show you how one could define a fixed set of volumes that Bacula will rotate
through on a regular schedule. There are an infinite number of such schemes, all of which have various
advantages and disadvantages.

We start with the following assumptions:

• A single tape has more than enough capacity to do a full save.

Bacula Version 5.0.3 231

• There are ten tapes that are used on a daily basis for incremental backups. They are prelabeled Daily1
... Daily10.

• There are four tapes that are used on a weekly basis for full backups. They are labeled Week1 ...
Week4.

• There are 12 tapes that are used on a monthly basis for full backups. They are numbered Month1 ...
Month12

• A full backup is done every Saturday evening (tape inserted Friday evening before leaving work).

• No backups are done over the weekend (this is easy to change).

• The first Friday of each month, a Monthly tape is used for the Full backup.

• Incremental backups are done Monday - Friday (actually Tue-Fri mornings).

We start the system by doing a Full save to one of the weekly volumes or one of the monthly volumes. The
next morning, we remove the tape and insert a Daily tape. Friday evening, we remove the Daily tape and
insert the next tape in the Weekly series. Monday, we remove the Weekly tape and re-insert the Daily tape.
On the first Friday of the next month, we insert the next Monthly tape in the series rather than a Weekly
tape, then continue. When a Daily tape finally fills up, Bacula will request the next one in the series, and
the next day when you notice the email message, you will mount it and Bacula will finish the unfinished
incremental backup.

What does this give? Well, at any point, you will have the last complete Full save plus several Incremental
saves. For any given file you want to recover (or your whole system), you will have a copy of that file every
day for at least the last 14 days. For older versions, you will have at least three and probably four Friday
full saves of that file, and going back further, you will have a copy of that file made on the beginning of the
month for at least a year.

So you have copies of any file (or your whole system) for at least a year, but as you go back in time, the
time between copies increases from daily to weekly to monthly.

What would the Bacula configuration look like to implement such a scheme?

Schedule {

Name = "NightlySave"

Run = Level=Full Pool=Monthly 1st sat at 03:05

Run = Level=Full Pool=Weekly 2nd-5th sat at 03:05

Run = Level=Incremental Pool=Daily tue-fri at 03:05

}

Job {

Name = "NightlySave"

Type = Backup

Level = Full

Client = LocalMachine

FileSet = "File Set"

Messages = Standard

Storage = DDS-4

Pool = Daily

Schedule = "NightlySave"

}

Definition of file storage device

Storage {

Name = DDS-4

Address = localhost

SDPort = 9103

Password = XXXXXXXXXXXXX

Device = FileStorage

Media Type = 8mm

}

FileSet {

Name = "File Set"

Include = signature=MD5 {

fffffffffffffffff

}

Exclude = { *.o }

232 Bacula Version 5.0.3

}

Pool {

Name = Daily

Pool Type = Backup

AutoPrune = yes

VolumeRetention = 10d # recycle in 10 days

Maximum Volumes = 10

Recycle = yes

}

Pool {

Name = Weekly

Use Volume Once = yes

Pool Type = Backup

AutoPrune = yes

VolumeRetention = 30d # recycle in 30 days (default)

Recycle = yes

}

Pool {

Name = Monthly

Use Volume Once = yes

Pool Type = Backup

AutoPrune = yes

VolumeRetention = 365d # recycle in 1 year

Recycle = yes

}

25.7 Automatic Pruning and Recycling Example

Perhaps the best way to understand the various resource records that come into play during automatic
pruning and recycling is to run a Job that goes through the whole cycle. If you add the following resources
to your Director’s configuration file:

Schedule {

Name = "30 minute cycle"

Run = Level=Full Pool=File Messages=Standard Storage=File

hourly at 0:05

Run = Level=Full Pool=File Messages=Standard Storage=File

hourly at 0:35

}

Job {

Name = "Filetest"

Type = Backup

Level = Full

Client=XXXXXXXXXX

FileSet="Test Files"

Messages = Standard

Storage = File

Pool = File

Schedule = "30 minute cycle"

}

Definition of file storage device

Storage {

Name = File

Address = XXXXXXXXXXX

SDPort = 9103

Password = XXXXXXXXXXXXX

Device = FileStorage

Media Type = File

}

FileSet {

Name = "Test Files"

Include = signature=MD5 {

fffffffffffffffff

}

Exclude = { *.o }

}

Pool {

Name = File

Use Volume Once = yes

Pool Type = Backup

Bacula Version 5.0.3 233

LabelFormat = "File"

AutoPrune = yes

VolumeRetention = 4h

Maximum Volumes = 12

Recycle = yes

}

Where you will need to replace the ffffffffff’s by the appropriate files to be saved for your configuration. For
the FileSet Include, choose a directory that has one or two megabytes maximum since there will probably
be approximately eight copies of the directory that Bacula will cycle through.

In addition, you will need to add the following to your Storage daemon’s configuration file:

Device {

Name = FileStorage

Media Type = File

Archive Device = /tmp

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

With the above resources, Bacula will start a Job every half hour that saves a copy of the directory you
chose to /tmp/File0001 ... /tmp/File0012. After 4 hours, Bacula will start recycling the backup Volumes
(/tmp/File0001 ...). You should see this happening in the output produced. Bacula will automatically create
the Volumes (Files) the first time it uses them.

To turn it off, either delete all the resources you’ve added, or simply comment out the Schedule record in
the Job resource.

25.8 Manually Recycling Volumes

Although automatic recycling of Volumes is implemented in version 1.20 and later (see the
Automatic Recycling of Volumes chapter of this manual), you may want to manually force reuse (recycling)
of a Volume.

Assuming that you want to keep the Volume name, but you simply want to write new data on the tape, the
steps to take are:

• Use the update volume command in the Console to ensure that the Recycle field is set to 1

• Use the purge jobs volume command in the Console to mark the Volume as Purged. Check by
using list volumes.

Once the Volume is marked Purged, it will be recycled the next time a Volume is needed.

If you wish to reuse the tape by giving it a new name, follow the following steps:

• Use the purge jobs volume command in the Console to mark the Volume as Purged. Check by
using list volumes.

• In Bacula version 1.30 or greater, use the Console relabel command to relabel the Volume.

Please note that the relabel command applies only to tape Volumes.

For Bacula versions prior to 1.30 or to manually relabel the Volume, use the instructions below:

234 Bacula Version 5.0.3

• Use the delete volume command in the Console to delete the Volume from the Catalog.

• If a different tape is mounted, use the unmount command, remove the tape, and insert the tape to
be renamed.

• Write an EOF mark in the tape using the following commands:

mt -f /dev/nst0 rewind

mt -f /dev/nst0 weof

where you replace /dev/nst0 with the appropriate device name on your system.

• Use the label command to write a new label to the tape and to enter it in the catalog.

Please be aware that the delete command can be dangerous. Once it is done, to recover the File records, you
must either restore your database as it was before the delete command, or use the bscan utility program
to scan the tape and recreate the database entries.

Chapter 26

Basic Volume Management

This chapter presents most all the features needed to do Volume management. Most of the concepts apply
equally well to both tape and disk Volumes. However, the chapter was originally written to explain backing
up to disk, so you will see it is slanted in that direction, but all the directives presented here apply equally
well whether your volume is disk or tape.

If you have a lot of hard disk storage or you absolutely must have your backups run within a small time
window, you may want to direct Bacula to backup to disk Volumes rather than tape Volumes. This chapter
is intended to give you some of the options that are available to you so that you can manage either disk or
tape volumes.

26.1 Key Concepts and Resource Records

Getting Bacula to write to disk rather than tape in the simplest case is rather easy. In the Storage daemon’s
configuration file, you simply define an Archive Device to be a directory. For example, if you want your
disk backups to go into the directory /home/bacula/backups, you could use the following:

Device {

Name = FileBackup

Media Type = File

Archive Device = /home/bacula/backups

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Assuming you have the appropriate Storage resource in your Director’s configuration file that references
the above Device resource,

Storage {

Name = FileStorage

Address = ...

Password = ...

Device = FileBackup

Media Type = File

}

Bacula will then write the archive to the file /home/bacula/backups/<volume-name> where <volume-
name> is the volume name of a Volume defined in the Pool. For example, if you have labeled a Volume
named Vol001, Bacula will write to the file /home/bacula/backups/Vol001. Although you can later
move the archive file to another directory, you should not rename it or it will become unreadable by Bacula.

235

236 Bacula Version 5.0.3

This is because each archive has the filename as part of the internal label, and the internal label must agree
with the system filename before Bacula will use it.

Although this is quite simple, there are a number of problems. The first is that unless you specify otherwise,
Bacula will always write to the same volume until you run out of disk space. This problem is addressed
below.

In addition, if you want to use concurrent jobs that write to several different volumes at the same time, you
will need to understand a number of other details. An example of such a configuration is given at the end
of this chapter under Concurrent Disk Jobs.

26.1.1 Pool Options to Limit the Volume Usage

Some of the options you have, all of which are specified in the Pool record, are:

• To write each Volume only once (i.e. one Job per Volume or file in this case), use:

UseVolumeOnce = yes.

• To write nnn Jobs to each Volume, use:

Maximum Volume Jobs = nnn.

• To limit the maximum size of each Volume, use:

Maximum Volume Bytes = mmmm.

Note, if you use disk volumes, with all versions up to and including 1.39.28, you should probably limit
the Volume size to some reasonable value such as say 5GB. This is because during a restore, Bacula
is currently unable to seek to the proper place in a disk volume to restore a file, which means that it
must read all records up to where the restore begins. If your Volumes are 50GB, reading half or more
of the volume could take quite a bit of time. Also, if you ever have a partial hard disk failure, you are
more likely to be able to recover more data if they are in smaller Volumes.

• To limit the use time (i.e. write the Volume for a maximum of five days), use:

Volume Use Duration = ttt.

Note that although you probably would not want to limit the number of bytes on a tape as you would on a
disk Volume, the other options can be very useful in limiting the time Bacula will use a particular Volume
(be it tape or disk). For example, the above directives can allow you to ensure that you rotate through a set
of daily Volumes if you wish.

As mentioned above, each of those directives is specified in the Pool or Pools that you use for your Volumes.
In the case of Maximum Volume Job, Maximum Volume Bytes, and Volume Use Duration, you
can actually specify the desired value on a Volume by Volume basis. The value specified in the Pool record
becomes the default when labeling new Volumes. Once a Volume has been created, it gets its own copy
of the Pool defaults, and subsequently changing the Pool will have no effect on existing Volumes. You can
either manually change the Volume values, or refresh them from the Pool defaults using the update volume
command in the Console. As an example of the use of one of the above, suppose your Pool resource contains:

Pool {

Name = File

Pool Type = Backup

Volume Use Duration = 23h

}

then if you run a backup once a day (every 24 hours), Bacula will use a new Volume for each backup, because
each Volume it writes can only be used for 23 hours after the first write. Note, setting the use duration to
23 hours is not a very good solution for tapes unless you have someone on-site during the weekends, because
Bacula will want a new Volume and no one will be present to mount it, so no weekend backups will be done
until Monday morning.

Bacula Version 5.0.3 237

26.1.2 Automatic Volume Labeling

Use of the above records brings up another problem – that of labeling your Volumes. For automated disk
backup, you can either manually label each of your Volumes, or you can have Bacula automatically label
new Volumes when they are needed. While, the automatic Volume labeling in version 1.30 and prior is a bit
simplistic, but it does allow for automation, the features added in version 1.31 permit automatic creation
of a wide variety of labels including information from environment variables and special Bacula Counter
variables. In version 1.37 and later, it is probably much better to use Python scripting and the NewVolume
event since generating Volume labels in a Python script is much easier than trying to figure out Counter
variables. See the Python Scripting chapter of this manual for more details.

Please note that automatic Volume labeling can also be used with tapes, but it is not nearly so practical since
the tapes must be pre-mounted. This requires some user interaction. Automatic labeling from templates
does NOT work with autochangers since Bacula will not access unknown slots. There are several methods of
labeling all volumes in an autochanger magazine. For more information on this, please see the Autochanger
chapter of this manual.

Automatic Volume labeling is enabled by making a change to both the Pool resource (Director) and to the
Device resource (Storage daemon) shown above. In the case of the Pool resource, you must provide Bacula
with a label format that it will use to create new names. In the simplest form, the label format is simply
the Volume name, to which Bacula will append a four digit number. This number starts at 0001 and is
incremented for each Volume the catalog contains. Thus if you modify your Pool resource to be:

Pool {

Name = File

Pool Type = Backup

Volume Use Duration = 23h

LabelFormat = "Vol"

}

Bacula will create Volume names Vol0001, Vol0002, and so on when new Volumes are needed. Much more
complex and elaborate labels can be created using variable expansion defined in the Variable Expansion
chapter of this manual.

The second change that is necessary to make automatic labeling work is to give the Storage daemon per-
mission to automatically label Volumes. Do so by adding LabelMedia = yes to the Device resource as
follows:

Device {

Name = File

Media Type = File

Archive Device = /home/bacula/backups

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

LabelMedia = yes

}

You can find more details of the Label Format Pool record in Label Format description of the Pool resource
records.

26.1.3 Restricting the Number of Volumes and Recycling

Automatic labeling discussed above brings up the problem of Volume management. With the above scheme,
a new Volume will be created every day. If you have not specified Retention periods, your Catalog will
continue to fill keeping track of all the files Bacula has backed up, and this procedure will create one new
archive file (Volume) every day.

The tools Bacula gives you to help automatically manage these problems are the following:

238 Bacula Version 5.0.3

1. Catalog file record retention periods, the File Retention = ttt record in the Client resource.

2. Catalog job record retention periods, the Job Retention = ttt record in the Client resource.

3. The AutoPrune = yes record in the Client resource to permit application of the above two retention
periods.

4. The Volume Retention = ttt record in the Pool resource.

5. The AutoPrune = yes record in the Pool resource to permit application of the Volume retention period.

6. The Recycle = yes record in the Pool resource to permit automatic recycling of Volumes whose Volume
retention period has expired.

7. The Recycle Oldest Volume = yes record in the Pool resource tells Bacula to Prune the oldest volume
in the Pool, and if all files were pruned to recycle this volume and use it.

8. The Recycle Current Volume = yes record in the Pool resource tells Bacula to Prune the currently
mounted volume in the Pool, and if all files were pruned to recycle this volume and use it.

9. The Purge Oldest Volume = yes record in the Pool resource permits a forced recycling of the oldest
Volume when a new one is needed. N.B. This record ignores retention periods! We highly
recommend not to use this record, but instead use Recycle Oldest Volume

10. The Maximum Volumes = nnn record in the Pool resource to limit the number of Volumes that can
be created.

The first three records (File Retention, Job Retention, and AutoPrune) determine the amount of
time that Job and File records will remain in your Catalog, and they are discussed in detail in the
Automatic Volume Recycling chapter of this manual.

Volume Retention, AutoPrune, and Recycle determine how long Bacula will keep your Volumes before reusing
them, and they are also discussed in detail in the Automatic Volume Recycling chapter of this manual.

The Maximum Volumes record can also be used in conjunction with the Volume Retention period to limit the
total number of archive Volumes (files) that Bacula will create. By setting an appropriate Volume Retention
period, a Volume will be purged just before it is needed and thus Bacula can cycle through a fixed set of
Volumes. Cycling through a fixed set of Volumes can also be done by setting Recycle Oldest Volume =
yes or Recycle Current Volume = yes. In this case, when Bacula needs a new Volume, it will prune the
specified volume.

26.2 Concurrent Disk Jobs

Above, we discussed how you could have a single device named FileBackup that writes to volumes in
/home/bacula/backups. You can, in fact, run multiple concurrent jobs using the Storage definition given
with this example, and all the jobs will simultaneously write into the Volume that is being written.

Now suppose you want to use multiple Pools, which means multiple Volumes, or suppose you want
each client to have its own Volume and perhaps its own directory such as /home/bacula/client1 and
/home/bacula/client2 ... With the single Storage and Device definition above, neither of these two is
possible. Why? Because Bacula disk storage follows the same rules as tape devices. Only one Volume
can be mounted on any Device at any time. If you want to simultaneously write multiple Volumes, you
will need multiple Device resources in your bacula-sd.conf file, and thus multiple Storage resources in your
bacula-dir.conf.

OK, so now you should understand that you need multiple Device definitions in the case of different directories
or different Pools, but you also need to know that the catalog data that Bacula keeps contains only the Media
Type and not the specific storage device. This permits a tape for example to be re-read on any compatible
tape drive. The compatibility being determined by the Media Type. The same applies to disk storage. Since
a volume that is written by a Device in say directory /home/bacula/backups cannot be read by a Device
with an Archive Device definition of /home/bacula/client1, you will not be able to restore all your files

Bacula Version 5.0.3 239

if you give both those devices Media Type = File. During the restore, Bacula will simply choose the first
available device, which may not be the correct one. If this is confusing, just remember that the Directory
has only the Media Type and the Volume name. It does not know the Archive Device (or the full path)
that is specified in the Storage daemon. Thus you must explicitly tie your Volumes to the correct Device by
using the Media Type.

The example shown below shows a case where there are two clients, each using its own Pool and storing
their Volumes in different directories.

26.3 An Example

The following example is not very practical, but can be used to demonstrate the proof of concept in a
relatively short period of time. The example consists of a two clients that are backed up to a set of 12
archive files (Volumes) for each client into different directories on the Storage machine. Each Volume is used
(written) only once, and there are four Full saves done every hour (so the whole thing cycles around after
three hours).

What is key here is that each physical device on the Storage daemon has a different Media Type. This allows
the Director to choose the correct device for restores ...

The Director’s configuration file is as follows:

Director {

Name = my-dir

QueryFile = "~/bacula/bin/query.sql"

PidDirectory = "~/bacula/working"

WorkingDirectory = "~/bacula/working"

Password = dir_password

}

Schedule {

Name = "FourPerHour"

Run = Level=Full hourly at 0:05

Run = Level=Full hourly at 0:20

Run = Level=Full hourly at 0:35

Run = Level=Full hourly at 0:50

}

Job {

Name = "RecycleExample"

Type = Backup

Level = Full

Client = Rufus

FileSet= "Example FileSet"

Messages = Standard

Storage = FileStorage

Pool = Recycle

Schedule = FourPerHour

}

Job {

Name = "RecycleExample2"

Type = Backup

Level = Full

Client = Roxie

FileSet= "Example FileSet"

Messages = Standard

Storage = FileStorage1

Pool = Recycle1

Schedule = FourPerHour

}

FileSet {

Name = "Example FileSet"

Include {

Options {

compression=GZIP

signature=SHA1

}

240 Bacula Version 5.0.3

File = /home/kern/bacula/bin

}

}

Client {

Name = Rufus

Address = rufus

Catalog = BackupDB

Password = client_password

}

Client {

Name = Roxie

Address = roxie

Catalog = BackupDB

Password = client1_password

}

Storage {

Name = FileStorage

Address = rufus

Password = local_storage_password

Device = RecycleDir

Media Type = File

}

Storage {

Name = FileStorage1

Address = rufus

Password = local_storage_password

Device = RecycleDir1

Media Type = File1

}

Catalog {

Name = BackupDB

dbname = bacula; user = bacula; password = ""

}

Messages {

Name = Standard

...

}

Pool {

Name = Recycle

Use Volume Once = yes

Pool Type = Backup

LabelFormat = "Recycle-"

AutoPrune = yes

VolumeRetention = 2h

Maximum Volumes = 12

Recycle = yes

}

Pool {

Name = Recycle1

Use Volume Once = yes

Pool Type = Backup

LabelFormat = "Recycle1-"

AutoPrune = yes

VolumeRetention = 2h

Maximum Volumes = 12

Recycle = yes

}

and the Storage daemon’s configuration file is:

Storage {

Name = my-sd

WorkingDirectory = "~/bacula/working"

Pid Directory = "~/bacula/working"

MaximumConcurrentJobs = 10

}

Director {

Bacula Version 5.0.3 241

Name = my-dir

Password = local_storage_password

}

Device {

Name = RecycleDir

Media Type = File

Archive Device = /home/bacula/backups

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Device {

Name = RecycleDir1

Media Type = File1

Archive Device = /home/bacula/backups1

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Messages {

Name = Standard

director = my-dir = all

}

With a little bit of work, you can change the above example into a weekly or monthly cycle (take care about
the amount of archive disk space used).

26.4 Backing up to Multiple Disks

Bacula can, of course, use multiple disks, but in general, each disk must be a separate Device specification
in the Storage daemon’s conf file, and you must then select what clients to backup to each disk. You will
also want to give each Device specification a different Media Type so that during a restore, Bacula will be
able to find the appropriate drive.

The situation is a bit more complicated if you want to treat two different physical disk drives (or partitions)
logically as a single drive, which Bacula does not directly support. However, it is possible to back up your
data to multiple disks as if they were a single drive by linking the Volumes from the first disk to the second
disk.

For example, assume that you have two disks named /disk1 and /disk2. If you then create a standard
Storage daemon Device resource for backing up to the first disk, it will look like the following:

Device {

Name = client1

Media Type = File

Archive Device = /disk1

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Since there is no way to get the above Device resource to reference both /disk1 and /disk2 we do it by
pre-creating Volumes on /disk2 with the following:

ln -s /disk2/Disk2-vol001 /disk1/Disk2-vol001

ln -s /disk2/Disk2-vol002 /disk1/Disk2-vol002

242 Bacula Version 5.0.3

ln -s /disk2/Disk2-vol003 /disk1/Disk2-vol003

...

At this point, you can label the Volumes as Volume Disk2-vol001, Disk2-vol002, ... and Bacula will use
them as if they were on /disk1 but actually write the data to /disk2. The only minor inconvenience with this
method is that you must explicitly name the disks and cannot use automatic labeling unless you arrange to
have the labels exactly match the links you have created.

An important thing to know is that Bacula treats disks like tape drives as much as it can. This means that
you can only have a single Volume mounted at one time on a disk as defined in your Device resource in the
Storage daemon’s conf file. You can have multiple concurrent jobs running that all write to the one Volume
that is being used, but if you want to have multiple concurrent jobs that are writing to separate disks drives
(or partitions), you will need to define separate Device resources for each one, exactly as you would do for
two different tape drives. There is one fundamental difference, however. The Volumes that you create on
the two drives cannot be easily exchanged as they can for a tape drive, because they are physically resident
(already mounted in a sense) on the particular drive. As a consequence, you will probably want to give
them different Media Types so that Bacula can distinguish what Device resource to use during a restore. An
example would be the following:

Device {

Name = Disk1

Media Type = File1

Archive Device = /disk1

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Device {

Name = Disk2

Media Type = File2

Archive Device = /disk2

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

With the above device definitions, you can run two concurrent jobs each writing at the same time, one to
/disk1 and the other to /disk2. The fact that you have given them different Media Types will allow Bacula
to quickly choose the correct Storage resource in the Director when doing a restore.

26.5 Considerations for Multiple Clients

If we take the above example and add a second Client, here are a few considerations:

• Although the second client can write to the same set of Volumes, you will probably want to write to a
different set.

• You can write to a different set of Volumes by defining a second Pool, which has a different name and
a different LabelFormat.

• If you wish the Volumes for the second client to go into a different directory (perhaps even on a different
filesystem to spread the load), you would do so by defining a second Device resource in the Storage
daemon. The Name must be different, and the Archive Device could be different. To ensure that
Volumes are never mixed from one pool to another, you might also define a different MediaType (e.g.
File1).

Bacula Version 5.0.3 243

In this example, we have two clients, each with a different Pool and a different number of archive files
retained. They also write to different directories with different Volume labeling.

The Director’s configuration file is as follows:

Director {

Name = my-dir

QueryFile = "~/bacula/bin/query.sql"

PidDirectory = "~/bacula/working"

WorkingDirectory = "~/bacula/working"

Password = dir_password

}

Basic weekly schedule

Schedule {

Name = "WeeklySchedule"

Run = Level=Full fri at 1:30

Run = Level=Incremental sat-thu at 1:30

}

FileSet {

Name = "Example FileSet"

Include {

Options {

compression=GZIP

signature=SHA1

}

File = /home/kern/bacula/bin

}

}

Job {

Name = "Backup-client1"

Type = Backup

Level = Full

Client = client1

FileSet= "Example FileSet"

Messages = Standard

Storage = File1

Pool = client1

Schedule = "WeeklySchedule"

}

Job {

Name = "Backup-client2"

Type = Backup

Level = Full

Client = client2

FileSet= "Example FileSet"

Messages = Standard

Storage = File2

Pool = client2

Schedule = "WeeklySchedule"

}

Client {

Name = client1

Address = client1

Catalog = BackupDB

Password = client1_password

File Retention = 7d

}

Client {

Name = client2

Address = client2

Catalog = BackupDB

Password = client2_password

}

Two Storage definitions with different Media Types

permits different directories

Storage {

Name = File1

Address = rufus

Password = local_storage_password

Device = client1

Media Type = File1

}

Storage {

Name = File2

244 Bacula Version 5.0.3

Address = rufus

Password = local_storage_password

Device = client2

Media Type = File2

}

Catalog {

Name = BackupDB

dbname = bacula; user = bacula; password = ""

}

Messages {

Name = Standard

...

}

Two pools permits different cycling periods and Volume names

Cycle through 15 Volumes (two weeks)

Pool {

Name = client1

Use Volume Once = yes

Pool Type = Backup

LabelFormat = "Client1-"

AutoPrune = yes

VolumeRetention = 13d

Maximum Volumes = 15

Recycle = yes

}

Cycle through 8 Volumes (1 week)

Pool {

Name = client2

Use Volume Once = yes

Pool Type = Backup

LabelFormat = "Client2-"

AutoPrune = yes

VolumeRetention = 6d

Maximum Volumes = 8

Recycle = yes

}

and the Storage daemon’s configuration file is:

Storage {

Name = my-sd

WorkingDirectory = "~/bacula/working"

Pid Directory = "~/bacula/working"

MaximumConcurrentJobs = 10

}

Director {

Name = my-dir

Password = local_storage_password

}

Archive directory for Client1

Device {

Name = client1

Media Type = File1

Archive Device = /home/bacula/client1

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Archive directory for Client2

Device {

Name = client2

Media Type = File2

Archive Device = /home/bacula/client2

LabelMedia = yes;

Random Access = Yes;

AutomaticMount = yes;

RemovableMedia = no;

AlwaysOpen = no;

}

Messages {

Name = Standard

director = my-dir = all

Bacula Version 5.0.3 245

}

246 Bacula Version 5.0.3

Chapter 27

Automated Disk Backup

If you manage five or ten machines and have a nice tape backup, you don’t need Pools, and you may wonder
what they are good for. In this chapter, you will see that Pools can help you optimize disk storage space.
The same techniques can be applied to a shop that has multiple tape drives, or that wants to mount various
different Volumes to meet their needs.

The rest of this chapter will give an example involving backup to disk Volumes, but most of the information
applies equally well to tape Volumes.

27.1 The Problem

A site that I administer (a charitable organization) had a tape DDS-3 tape drive that was failing. The exact
reason for the failure is still unknown. Worse yet, their full backup size is about 15GB whereas the capacity
of their broken DDS-3 was at best 8GB (rated 6/12). A new DDS-4 tape drive and the necessary cassettes
was more expensive than their budget could handle.

27.2 The Solution

They want to maintain six months of backup data, and be able to access the old files on a daily basis for
a week, a weekly basis for a month, then monthly for six months. In addition, offsite capability was not
needed (well perhaps it really is, but it was never used). Their daily changes amount to about 300MB on
the average, or about 2GB per week.

As a consequence, the total volume of data they need to keep to meet their needs is about 100GB (15GB x
6 + 2GB x 5 + 0.3 x 7) = 102.1GB.

The chosen solution was to buy a 120GB hard disk for next to nothing – far less than 1/10th the price of a
tape drive and the cassettes to handle the same amount of data, and to have Bacula write to disk files.

The rest of this chapter will explain how to setup Bacula so that it would automatically manage a set of disk
files with the minimum sysadmin intervention. The system has been running since 22 January 2004 until
today (23 June 2007) with no intervention, with the exception of adding a second 120GB hard disk after a
year because their needs grew over that time to more than the 120GB (168GB to be exact). The only other
intervention I have made is a periodic (about once a year) Bacula upgrade.

247

248 Bacula Version 5.0.3

27.3 Overall Design

Getting Bacula to write to disk rather than tape in the simplest case is rather easy, and is documented in
the previous chapter. In addition, all the directives discussed here are explained in that chapter. We’ll leave
it to you to look at the details there. If you haven’t read it and are not familiar with Pools, you probably
should at least read it once quickly for the ideas before continuing here.

One needs to consider about what happens if we have only a single large Bacula Volume defined on our
hard disk. Everything works fine until the Volume fills, then Bacula will ask you to mount a new Volume.
This same problem applies to the use of tape Volumes if your tape fills. Being a hard disk and the only
one you have, this will be a bit of a problem. It should be obvious that it is better to use a number of
smaller Volumes and arrange for Bacula to automatically recycle them so that the disk storage space can be
reused. The other problem with a single Volume, is that until version 2.0.0, Bacula did not seek within a
disk Volume, so restoring a single file can take more time than one would expect.

As mentioned, the solution is to have multiple Volumes, or files on the disk. To do so, we need to limit the
use and thus the size of a single Volume, by time, by number of jobs, or by size. Any of these would work,
but we chose to limit the use of a single Volume by putting a single job in each Volume with the exception
of Volumes containing Incremental backup where there will be 6 jobs (a week’s worth of data) per volume.
The details of this will be discussed shortly. This is a single client backup, so if you have multiple clients
you will need to multiply those numbers by the number of clients, or use a different system for switching
volumes, such as limiting the volume size.

The next problem to resolve is recycling of Volumes. As you noted from above, the requirements are to be
able to restore monthly for 6 months, weekly for a month, and daily for a week. So to simplify things, why
not do a Full save once a month, a Differential save once a week, and Incremental saves daily. Now since
each of these different kinds of saves needs to remain valid for differing periods, the simplest way to do this
(and possibly the only) is to have a separate Pool for each backup type.

The decision was to use three Pools: one for Full saves, one for Differential saves, and one for Incremental
saves, and each would have a different number of volumes and a different Retention period to accomplish
the requirements.

27.3.1 Full Pool

Putting a single Full backup on each Volume, will require six Full save Volumes, and a retention period of
six months. The Pool needed to do that is:

Pool {

Name = Full-Pool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 6 months

Maximum Volume Jobs = 1

Label Format = Full-

Maximum Volumes = 9

}

Since these are disk Volumes, no space is lost by having separate Volumes for each backup (done once a
month in this case). The items to note are the retention period of six months (i.e. they are recycled after
six months), that there is one job per volume (Maximum Volume Jobs = 1), the volumes will be labeled
Full-0001, ... Full-0006 automatically. One could have labeled these manually from the start, but why not
use the features of Bacula.

Six months after the first volume is used, it will be subject to pruning and thus recycling, so with a maximum
of 9 volumes, there should always be 3 volumes available (note, they may all be marked used, but they will
be marked purged and recycled as needed).

Bacula Version 5.0.3 249

If you have two clients, you would want to set Maximum Volume Jobs to 2 instead of one, or set a limit
on the size of the Volumes, and possibly increase the maximum number of Volumes.

27.3.2 Differential Pool

For the Differential backup Pool, we choose a retention period of a bit longer than a month and ensure that
there is at least one Volume for each of the maximum of five weeks in a month. So the following works:

Pool {

Name = Diff-Pool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 40 days

Maximum Volume Jobs = 1

Label Format = Diff-

Maximum Volumes = 10

}

As you can see, the Differential Pool can grow to a maximum of 9 volumes, and the Volumes are retained
40 days and thereafter they can be recycled. Finally there is one job per volume. This, of course, could be
tightened up a lot, but the expense here is a few GB which is not too serious.

If a new volume is used every week, after 40 days, one will have used 7 volumes, and there should then
always be 3 volumes that can be purged and recycled.

See the discussion above concering the Full pool for how to handle multiple clients.

27.3.3 Incremental Pool

Finally, here is the resource for the Incremental Pool:

Pool {

Name = Inc-Pool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 20 days

Maximum Volume Jobs = 6

Label Format = Inc-

Maximum Volumes = 7

}

We keep the data for 20 days rather than just a week as the needs require. To reduce the proliferation of
volume names, we keep a week’s worth of data (6 incremental backups) in each Volume. In practice, the
retention period should be set to just a bit more than a week and keep only two or three volumes instead of
five. Again, the lost is very little and as the system reaches the full steady state, we can adjust these values
so that the total disk usage doesn’t exceed the disk capacity.

If you have two clients, the simplest thing to do is to increase the maximum volume jobs from 6 to 12. As
mentioned above, it is also possible limit the size of the volumes. However, in that case, you will need to
have a better idea of the volume or add sufficient volumes to the pool so that you will be assured that in
the next cycle (after 20 days) there is at least one volume that is pruned and can be recycled.

27.4 The Actual Conf Files

The following example shows you the actual files used, with only a few minor modifications to simplify
things.

250 Bacula Version 5.0.3

The Director’s configuration file is as follows:

Director { # define myself

Name = bacula-dir

DIRport = 9101

QueryFile = "/home/bacula/bin/query.sql"

WorkingDirectory = "/home/bacula/working"

PidDirectory = "/home/bacula/working"

Maximum Concurrent Jobs = 1

Password = " *** CHANGE ME ***"

Messages = Standard

}

By default, this job will back up to disk in /tmp

Job {

Name = client

Type = Backup

Client = client-fd

FileSet = "Full Set"

Schedule = "WeeklyCycle"

Storage = File

Messages = Standard

Pool = Default

Full Backup Pool = Full-Pool

Incremental Backup Pool = Inc-Pool

Differential Backup Pool = Diff-Pool

Write Bootstrap = "/home/bacula/working/client.bsr"

Priority = 10

}

Backup the catalog database (after the nightly save)

Job {

Name = "BackupCatalog"

Type = Backup

Client = client-fd

FileSet="Catalog"

Schedule = "WeeklyCycleAfterBackup"

Storage = File

Messages = Standard

Pool = Default

This creates an ASCII copy of the catalog

WARNING!!! Passing the password via the command line is insecure.

see comments in make_catalog_backup for details.

RunBeforeJob = "/home/bacula/bin/make_catalog_backup bacula bacula"

This deletes the copy of the catalog

RunAfterJob = "/home/bacula/bin/delete_catalog_backup"

Write Bootstrap = "/home/bacula/working/BackupCatalog.bsr"

Priority = 11 # run after main backup

}

Standard Restore template, to be changed by Console program

Job {

Name = "RestoreFiles"

Type = Restore

Client = havana-fd

FileSet="Full Set"

Storage = File

Messages = Standard

Pool = Default

Where = /tmp/bacula-restores

}

List of files to be backed up

FileSet {

Name = "Full Set"

Include = { Options { signature=SHA1; compression=GZIP9 }

File = /

File = /usr

File = /home

File = /boot

File = /var

File = /opt

}

Exclude = {

Bacula Version 5.0.3 251

File = /proc

File = /tmp

File = /.journal

File = /.fsck

...

}

}

Schedule {

Name = "WeeklyCycle"

Run = Level=Full 1st sun at 2:05

Run = Level=Differential 2nd-5th sun at 2:05

Run = Level=Incremental mon-sat at 2:05

}

This schedule does the catalog. It starts after the WeeklyCycle

Schedule {

Name = "WeeklyCycleAfterBackup"

Run = Level=Full sun-sat at 2:10

}

This is the backup of the catalog

FileSet {

Name = "Catalog"

Include { Options { signature=MD5 }

File = /home/bacula/working/bacula.sql

}

}

Client {

Name = client-fd

Address = client

FDPort = 9102

Catalog = MyCatalog

Password = " *** CHANGE ME ***"

AutoPrune = yes # Prune expired Jobs/Files

Job Retention = 6 months

File Retention = 60 days

}

Storage {

Name = File

Address = localhost

SDPort = 9103

Password = " *** CHANGE ME ***"

Device = FileStorage

Media Type = File

}

Catalog {

Name = MyCatalog

dbname = bacula; user = bacula; password = ""

}

Pool {

Name = Full-Pool

Pool Type = Backup

Recycle = yes # automatically recycle Volumes

AutoPrune = yes # Prune expired volumes

Volume Retention = 6 months

Maximum Volume Jobs = 1

Label Format = Full-

Maximum Volumes = 9

}

Pool {

Name = Inc-Pool

Pool Type = Backup

Recycle = yes # automatically recycle Volumes

AutoPrune = yes # Prune expired volumes

Volume Retention = 20 days

Maximum Volume Jobs = 6

Label Format = Inc-

Maximum Volumes = 7

}

Pool {

252 Bacula Version 5.0.3

Name = Diff-Pool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 40 days

Maximum Volume Jobs = 1

Label Format = Diff-

Maximum Volumes = 10

}

Messages {

Name = Standard

mailcommand = "bsmtp -h mail.domain.com -f \"\(Bacula\) %r\"

-s \"Bacula: %t %e of %c %l\" %r"

operatorcommand = "bsmtp -h mail.domain.com -f \"\(Bacula\) %r\"

-s \"Bacula: Intervention needed for %j\" %r"

mail = root@domain.com = all, !skipped

operator = root@domain.com = mount

console = all, !skipped, !saved

append = "/home/bacula/bin/log" = all, !skipped

}

and the Storage daemon’s configuration file is:

Storage { # definition of myself

Name = bacula-sd

SDPort = 9103 # Director’s port

WorkingDirectory = "/home/bacula/working"

Pid Directory = "/home/bacula/working"

}

Director {

Name = bacula-dir

Password = " *** CHANGE ME ***"

}

Device {

Name = FileStorage

Media Type = File

Archive Device = /files/bacula

LabelMedia = yes; # lets Bacula label unlabeled media

Random Access = Yes;

AutomaticMount = yes; # when device opened, read it

RemovableMedia = no;

AlwaysOpen = no;

}

Messages {

Name = Standard

director = bacula-dir = all

}

Chapter 28

Migration and Copy

The term Migration, as used in the context of Bacula, means moving data from one Volume to another. In
particular it refers to a Job (similar to a backup job) that reads data that was previously backed up to a
Volume and writes it to another Volume. As part of this process, the File catalog records associated with the
first backup job are purged. In other words, Migration moves Bacula Job data from one Volume to another
by reading the Job data from the Volume it is stored on, writing it to a different Volume in a different Pool,
and then purging the database records for the first Job.

The Copy process is essentially identical to the Migration feature with the exception that the Job that is
copied is left unchanged. This essentially creates two identical copies of the same backup. However, the copy
is treated as a copy rather than a backup job, and hence is not directly available for restore. If bacula founds
a copy when a job record is purged (deleted) from the catalog, it will promote the copy as real backup and
will make it available for automatic restore.

The Copy and the Migration jobs run without using the File daemon by copying the data from the old
backup Volume to a different Volume in a different Pool.

The section process for which Job or Jobs are migrated can be based on quite a number of different criteria
such as:

• a single previous Job

• a Volume

• a Client

• a regular expression matching a Job, Volume, or Client name

• the time a Job has been on a Volume

• high and low water marks (usage or occupation) of a Pool

• Volume size

The details of these selection criteria will be defined below.

To run a Migration job, you must first define a Job resource very similar to a Backup Job but with Type =
Migrate instead of Type = Backup. One of the key points to remember is that the Pool that is specified
for the migration job is the only pool from which jobs will be migrated, with one exception noted below. In
addition, the Pool to which the selected Job or Jobs will be migrated is defined by the Next Pool = ... in
the Pool resource specified for the Migration Job.

Bacula permits Pools to contain Volumes with different Media Types. However, when doing migration,
this is a very undesirable condition. For migration to work properly, you should use Pools containing only
Volumes of the same Media Type for all migration jobs.

253

254 Bacula Version 5.0.3

The migration job normally is either manually started or starts from a Schedule much like a backup job. It
searches for a previous backup Job or Jobs that match the parameters you have specified in the migration
Job resource, primarily a Selection Type (detailed a bit later). Then for each previous backup JobId
found, the Migration Job will run a new Job which copies the old Job data from the previous Volume to a
new Volume in the Migration Pool. It is possible that no prior Jobs are found for migration, in which case,
the Migration job will simply terminate having done nothing, but normally at a minimum, three jobs are
involved during a migration:

• The currently running Migration control Job. This is only a control job for starting the migration child
jobs.

• The previous Backup Job (already run). The File records for this Job are purged if the Migration job
successfully terminates. The original data remains on the Volume until it is recycled and rewritten.

• A new Migration Backup Job that moves the data from the previous Backup job to the new Volume.
If you subsequently do a restore, the data will be read from this Job.

If the Migration control job finds a number of JobIds to migrate (e.g. it is asked to migrate one or more
Volumes), it will start one new migration backup job for each JobId found on the specified Volumes. Please
note that Migration doesn’t scale too well since Migrations are done on a Job by Job basis. This if you select
a very large volume or a number of volumes for migration, you may have a large number of Jobs that start.
Because each job must read the same Volume, they will run consecutively (not simultaneously).

28.1 Migration and Copy Job Resource Directives

The following directives can appear in a Director’s Job resource, and they are used to define a Migration
job.

Pool = <Pool-name> The Pool specified in the Migration control Job is not a new directive for the Job
resource, but it is particularly important because it determines what Pool will be examined for finding
JobIds to migrate. The exception to this is when Selection Type = SQLQuery, and although a
Pool directive must still be specified, no Pool is used, unless you specifically include it in the SQL
query. Note, in any case, the Pool resource defined by the Pool directove must contain a Next Pool
= ... directive to define the Pool to which the data will be migrated.

Type = Migrate Migrate is a new type that defines the job that is run as being a Migration Job. A
Migration Job is a sort of control job and does not have any Files associated with it, and in that sense
they are more or less like an Admin job. Migration jobs simply check to see if there is anything to
Migrate then possibly start and control new Backup jobs to migrate the data from the specified Pool to
another Pool. Note, any original JobId that is migrated will be marked as having been migrated, and
the original JobId can nolonger be used for restores; all restores will be done from the new migrated
Job.

Type = Copy Copy is a new type that defines the job that is run as being a Copy Job. A Copy Job is a
sort of control job and does not have any Files associated with it, and in that sense they are more or
less like an Admin job. Copy jobs simply check to see if there is anything to Copy then possibly start
and control new Backup jobs to copy the data from the specified Pool to another Pool. Note that when
a copy is made, the original JobIds are left unchanged. The new copies can not be used for restoration
unless you specifically choose them by JobId. If you subsequently delete a JobId that has a copy, the
copy will be automatically upgraded to a Backup rather than a Copy, and it will subsequently be used
for restoration.

Selection Type = <Selection-type-keyword> The <Selection-type-keyword> determines how the mi-
gration job will go about selecting what JobIds to migrate. In most cases, it is used in conjunction
with a Selection Pattern to give you fine control over exactly what JobIds are selected. The possible
values for <Selection-type-keyword> are:

Bacula Version 5.0.3 255

SmallestVolume This selection keyword selects the volume with the fewest bytes from the Pool to
be migrated. The Pool to be migrated is the Pool defined in the Migration Job resource. The
migration control job will then start and run one migration backup job for each of the Jobs found
on this Volume. The Selection Pattern, if specified, is not used.

OldestVolume This selection keyword selects the volume with the oldest last write time in the Pool
to be migrated. The Pool to be migrated is the Pool defined in the Migration Job resource. The
migration control job will then start and run one migration backup job for each of the Jobs found
on this Volume. The Selection Pattern, if specified, is not used.

Client The Client selection type, first selects all the Clients that have been backed up in the Pool
specified by the Migration Job resource, then it applies the Selection Pattern (defined below)
as a regular expression to the list of Client names, giving a filtered Client name list. All jobs that
were backed up for those filtered (regexed) Clients will be migrated. The migration control job
will then start and run one migration backup job for each of the JobIds found for those filtered
Clients.

Volume The Volume selection type, first selects all the Volumes that have been backed up in the Pool
specified by the Migration Job resource, then it applies the Selection Pattern (defined below)
as a regular expression to the list of Volume names, giving a filtered Volume list. All JobIds that
were backed up for those filtered (regexed) Volumes will be migrated. The migration control job
will then start and run one migration backup job for each of the JobIds found on those filtered
Volumes.

Job The Job selection type, first selects all the Jobs (as defined on the Name directive in a Job
resource) that have been backed up in the Pool specified by the Migration Job resource, then it
applies the Selection Pattern (defined below) as a regular expression to the list of Job names,
giving a filtered Job name list. All JobIds that were run for those filtered (regexed) Job names
will be migrated. Note, for a given Job named, they can be many jobs (JobIds) that ran. The
migration control job will then start and run one migration backup job for each of the Jobs found.

SQLQuery The SQLQuery selection type, used the Selection Pattern as an SQL query to obtain
the JobIds to be migrated. The Selection Pattern must be a valid SELECT SQL statement for
your SQL engine, and it must return the JobId as the first field of the SELECT.

PoolOccupancy This selection type will cause the Migration job to compute the total size of the
specified pool for all Media Types combined. If it exceeds the Migration High Bytes defined
in the Pool, the Migration job will migrate all JobIds beginning with the oldest Volume in the
pool (determined by Last Write time) until the Pool bytes drop below the Migration Low
Bytes defined in the Pool. This calculation should be consider rather approximative because it
is made once by the Migration job before migration is begun, and thus does not take into account
additional data written into the Pool during the migration. In addition, the calculation of the
total Pool byte size is based on the Volume bytes saved in the Volume (Media) database entries.
The bytes calculate for Migration is based on the value stored in the Job records of the Jobs to
be migrated. These do not include the Storage daemon overhead as is in the total Pool size. As
a consequence, normally, the migration will migrate more bytes than strictly necessary.

PoolTime The PoolTime selection type will cause the Migration job to look at the time each JobId
has been in the Pool since the job ended. All Jobs in the Pool longer than the time specified on
Migration Time directive in the Pool resource will be migrated.

PoolUncopiedJobs This selection which copies all jobs from a pool to an other pool which were not
copied before is available only for copy Jobs.

Selection Pattern = <Quoted-string> The Selection Patterns permitted for each Selection-type-
keyword are described above.

For the OldestVolume and SmallestVolume, this Selection pattern is not used (ignored).

For the Client, Volume, and Job keywords, this pattern must be a valid regular expression that will
filter the appropriate item names found in the Pool.

For the SQLQuery keyword, this pattern must be a valid SELECT SQL statement that returns JobIds.

256 Bacula Version 5.0.3

28.2 Migration Pool Resource Directives

The following directives can appear in a Director’s Pool resource, and they are used to define a Migration
job.

Migration Time = <time-specification> If a PoolTime migration is done, the time specified here in
seconds (time modifiers are permitted – e.g. hours, ...) will be used. If the previous Backup Job or
Jobs selected have been in the Pool longer than the specified PoolTime, then they will be migrated.

Migration High Bytes = <byte-specification> This directive specifies the number of bytes in the Pool
which will trigger a migration if a PoolOccupancy migration selection type has been specified. The
fact that the Pool usage goes above this level does not automatically trigger a migration job. However,
if a migration job runs and has the PoolOccupancy selection type set, the Migration High Bytes will
be applied. Bacula does not currently restrict a pool to have only a single Media Type, so you must
keep in mind that if you mix Media Types in a Pool, the results may not be what you want, as the
Pool count of all bytes will be for all Media Types combined.

Migration Low Bytes = <byte-specification> This directive specifies the number of bytes in the Pool
which will stop a migration if a PoolOccupancy migration selection type has been specified and
triggered by more than Migration High Bytes being in the pool. In other words, once a migration
job is started with PoolOccupancy migration selection and it determines that there are more than
Migration High Bytes, the migration job will continue to run jobs until the number of bytes in the
Pool drop to or below Migration Low Bytes.

Next Pool = <pool-specification> The Next Pool directive specifies the pool to which Jobs will be
migrated. This directive is required to define the Pool into which the data will be migrated. Without
this directive, the migration job will terminate in error.

Storage = <storage-specification> The Storage directive specifies what Storage resource will be used
for all Jobs that use this Pool. It takes precedence over any other Storage specifications that may have
been given such as in the Schedule Run directive, or in the Job resource. We highly recommend that
you define the Storage resource to be used in the Pool rather than elsewhere (job, schedule run, ...).

28.3 Important Migration Considerations

• Each Pool into which you migrate Jobs or Volumes must contain Volumes of only one Media Type.

• Migration takes place on a JobId by JobId basis. That is each JobId is migrated in its entirety and
independently of other JobIds. Once the Job is migrated, it will be on the new medium in the new Pool,
but for the most part, aside from having a new JobId, it will appear with all the same characteristics of
the original job (start, end time, ...). The column RealEndTime in the catalog Job table will contain
the time and date that the Migration terminated, and by comparing it with the EndTime column you
can tell whether or not the job was migrated. The original job is purged of its File records, and its
Type field is changed from ”B” to ”M” to indicate that the job was migrated.

• Jobs on Volumes will be Migration only if the Volume is marked, Full, Used, or Error. Volumes that
are still marked Append will not be considered for migration. This prevents Bacula from attempting
to read the Volume at the same time it is writing it. It also reduces other deadlock situations, as well
as avoids the problem that you migrate a Volume and later find new files appended to that Volume.

• As noted above, for the Migration High Bytes, the calculation of the bytes to migrate is somewhat
approximate.

• If you keep Volumes of different Media Types in the same Pool, it is not clear how well migration will
work. We recommend only one Media Type per pool.

• It is possible to get into a resource deadlock where Bacula does not find enough drives to simultaneously
read and write all the Volumes needed to do Migrations. For the moment, you must take care as all
the resource deadlock algorithms are not yet implemented.

Bacula Version 5.0.3 257

• Migration is done only when you run a Migration job. If you set a Migration High Bytes and that
number of bytes is exceeded in the Pool no migration job will automatically start. You must schedule
the migration jobs, and they must run for any migration to take place.

• If you migrate a number of Volumes, a very large number of Migration jobs may start.

• Figuring out what jobs will actually be migrated can be a bit complicated due to the flexibility provided
by the regex patterns and the number of different options. Turning on a debug level of 100 or more
will provide a limited amount of debug information about the migration selection process.

• Bacula currently does only minimal Storage conflict resolution, so you must take care to ensure that
you don’t try to read and write to the same device or Bacula may block waiting to reserve a drive that
it will never find. In general, ensure that all your migration pools contain only one Media Type, and
that you always migrate to pools with different Media Types.

• The Next Pool = ... directive must be defined in the Pool referenced in the Migration Job to define
the Pool into which the data will be migrated.

• Pay particular attention to the fact that data is migrated on a Job by Job basis, and for any particular
Volume, only one Job can read that Volume at a time (no simultaneous read), so migration jobs that
all reference the same Volume will run sequentially. This can be a potential bottle neck and does not
scale very well to large numbers of jobs.

• Only migration of Selection Types of Job and Volume have been carefully tested. All the other
migration methods (time, occupancy, smallest, oldest, ...) need additional testing.

• Migration is only implemented for a single Storage daemon. You cannot read on one Storage daemon
and write on another.

28.4 Example Migration Jobs

When you specify a Migration Job, you must specify all the standard directives as for a Job. However,
certain such as the Level, Client, and FileSet, though they must be defined, are ignored by the Migration
job because the values from the original job used instead.

As an example, suppose you have the following Job that you run every night. To note: there is no Storage
directive in the Job resource; there is a Storage directive in each of the Pool resources; the Pool to be
migrated (File) contains a Next Pool directive that defines the output Pool (where the data is written by
the migration job).

Define the backup Job

Job {

Name = "NightlySave"

Type = Backup

Level = Incremental # default

Client=rufus-fd

FileSet="Full Set"

Schedule = "WeeklyCycle"

Messages = Standard

Pool = Default

}

Default pool definition

Pool {

Name = Default

Pool Type = Backup

AutoPrune = yes

Recycle = yes

Next Pool = Tape

Storage = File

LabelFormat = "File"

}

Tape pool definition

Pool {

258 Bacula Version 5.0.3

Name = Tape

Pool Type = Backup

AutoPrune = yes

Recycle = yes

Storage = DLTDrive

}

Definition of File storage device

Storage {

Name = File

Address = rufus

Password = "ccV3lVTsQRsdIUGyab0N4sMDavui2hOBkmpBU0aQKOr9"

Device = "File" # same as Device in Storage daemon

Media Type = File # same as MediaType in Storage daemon

}

Definition of DLT tape storage device

Storage {

Name = DLTDrive

Address = rufus

Password = "ccV3lVTsQRsdIUGyab0N4sMDavui2hOBkmpBU0aQKOr9"

Device = "HP DLT 80" # same as Device in Storage daemon

Media Type = DLT8000 # same as MediaType in Storage daemon

}

Where we have included only the essential information – i.e. the Director, FileSet, Catalog, Client, Schedule,
and Messages resources are omitted.

As you can see, by running the NightlySave Job, the data will be backed up to File storage using the Default
pool to specify the Storage as File.

Now, if we add the following Job resource to this conf file.

Job {

Name = "migrate-volume"

Type = Migrate

Level = Full

Client = rufus-fd

FileSet = "Full Set"

Messages = Standard

Pool = Default

Maximum Concurrent Jobs = 4

Selection Type = Volume

Selection Pattern = "File"

}

and then run the job named migrate-volume, all volumes in the Pool named Default (as specified in
the migrate-volume Job that match the regular expression pattern File will be migrated to tape storage
DLTDrive because the Next Pool in the Default Pool specifies that Migrations should go to the pool
named Tape, which uses Storage DLTDrive.

If instead, we use a Job resource as follows:

Job {

Name = "migrate"

Type = Migrate

Level = Full

Client = rufus-fd

FileSet="Full Set"

Messages = Standard

Pool = Default

Maximum Concurrent Jobs = 4

Selection Type = Job

Selection Pattern = ".*Save"

}

All jobs ending with the name Save will be migrated from the File Default to the Tape Pool, or from File
storage to Tape storage.

Chapter 29

File Deduplication using Base Jobs

A base job is sort of like a Full save except that you will want the FileSet to contain only files that are
unlikely to change in the future (i.e. a snapshot of most of your system after installing it). After the base
job has been run, when you are doing a Full save, you specify one or more Base jobs to be used. All files that
have been backed up in the Base job/jobs but not modified will then be excluded from the backup. During
a restore, the Base jobs will be automatically pulled in where necessary.

This is something none of the competition does, as far as we know (except perhaps BackupPC, which is a
Perl program that saves to disk only). It is big win for the user, it makes Bacula stand out as offering a
unique optimization that immediately saves time and money. Basically, imagine that you have 100 nearly
identical Windows or Linux machine containing the OS and user files. Now for the OS part, a Base job will
be backed up once, and rather than making 100 copies of the OS, there will be only one. If one or more of
the systems have some files updated, no problem, they will be automatically restored.

A new Job directive Base=Jobx, Joby... permits to specify the list of files that will be used during Full
backup as base.

Job {

Name = BackupLinux

Level= Base

...

}

Job {

Name = BackupZog4

Base = BackupZog4, BackupLinux

Accurate = yes

...

}

In this example, the job BackupZog4 will use the most recent version of all files contained in BackupZog4

and BackupLinux jobs. Base jobs should have run with level=Base to be used.

By default, Bacula will compare permissions bits, user and group fields, modification time, size and the
checksum of the file to choose between the current backup and the BaseJob file list. You can change this
behavior with the BaseJob FileSet option. This option works like the verify= one, that is described in the
FileSet chapter.

FileSet {

Name = Full

Include = {

Options {

BaseJob = pmugcs5

259

260 Bacula Version 5.0.3

Accurate = mcs

Verify = pin5

}

File = /

}

}

Important note: The current implementation doesn’t permit to scan volume with bscan. The result
wouldn’t permit to restore files easily.

Chapter 30

Backup Strategies

Although Recycling and Backing Up to Disk Volume have been discussed in previous chapters, this chapter
is meant to give you an overall view of possible backup strategies and to explain their advantages and
disadvantages.

30.1 Simple One Tape Backup

Probably the simplest strategy is to back everything up to a single tape and insert a new (or recycled) tape
when it fills and Bacula requests a new one.

30.1.1 Advantages

• The operator intervenes only when a tape change is needed. (once a month at my site).

• There is little chance of operator error because the tape is not changed daily.

• A minimum number of tapes will be needed for a full restore. Typically the best case will be one tape
and worst two.

• You can easily arrange for the Full backup to occur a different night of the month for each system,
thus load balancing and shortening the backup time.

30.1.2 Disadvantages

• If your site burns down, you will lose your current backups, and in my case about a month of data.

• After a tape fills and you have put in a blank tape, the backup will continue, and this will generally
happen during working hours.

30.1.3 Practical Details

This system is very simple. When the tape fills and Bacula requests a new tape, you unmount the tape from
the Console program, insert a new tape and label it. In most cases after the label, Bacula will automatically
mount the tape and resume the backup. Otherwise, you simply mount the tape.

Using this strategy, one typically does a Full backup once a week followed by daily Incremental backups.
To minimize the amount of data written to the tape, one can do a Full backup once a month on the first
Sunday of the month, a Differential backup on the 2nd-5th Sunday of the month, and incremental backups
the rest of the week.

261

262 Bacula Version 5.0.3

30.2 Manually Changing Tapes

If you use the strategy presented above, Bacula will ask you to change the tape, and you will unmount it
and then remount it when you have inserted the new tape.

If you do not wish to interact with Bacula to change each tape, there are several ways to get Bacula to
release the tape:

• In your Storage daemon’s Device resource, set AlwaysOpen = no In this case, Bacula will release
the tape after every job. If you run several jobs, the tape will be rewound and repositioned to the end
at the beginning of every job. This is not very efficient, but does let you change the tape whenever
you want.

• Use a RunAfterJob statement to run a script after your last job. This could also be an Admin job
that runs after all your backup jobs. The script could be something like:

#!/bin/sh

/full-path/bconsole -c /full-path/bconsole.conf <<END_OF_DATA

release storage=your-storage-name

END_OF_DATA

In this example, you would have AlwaysOpen=yes, but the release command would tell Bacula to
rewind the tape and on the next job assume the tape has changed. This strategy may not work on
some systems, or on autochangers because Bacula will still keep the drive open.

• The final strategy is similar to the previous case except that you would use the unmount command to
force Bacula to release the drive. Then you would eject the tape, and remount it as follows:

#!/bin/sh

/full-path/bconsole -c /full-path/bconsole.conf <\<END_OF_DATA

unmount storage=your-storage-name

END_OF_DATA

the following is a shell command

mt eject

/full-path/bconsole -c /full-path/bconsole.conf <<END_OF_DATA

mount storage=your-storage-name

END_OF_DATA

30.3 Daily Tape Rotation

This scheme is quite different from the one mentioned above in that a Full backup is done to a different
tape every day of the week. Generally, the backup will cycle continuously through five or six tapes each
week. Variations are to use a different tape each Friday, and possibly at the beginning of the month. Thus
if backups are done Monday through Friday only, you need only five tapes, and by having two Friday tapes,
you need a total of six tapes. Many sites run this way, or using modifications of it based on two week cycles
or longer.

30.3.1 Advantages

• All the data is stored on a single tape, so recoveries are simple and faster.

• Assuming the previous day’s tape is taken offsite each day, a maximum of one days data will be lost if
the site burns down.

Bacula Version 5.0.3 263

30.3.2 Disadvantages

• The tape must be changed every day requiring a lot of operator intervention.

• More errors will occur because of human mistakes.

• If the wrong tape is inadvertently mounted, the Backup for that day will not occur exposing the system
to data loss.

• There is much more movement of the tape each day (rewinds) leading to shorter tape drive life time.

• Initial setup of Bacula to run in this mode is more complicated than the Single tape system described
above.

• Depending on the number of systems you have and their data capacity, it may not be possible to do a
Full backup every night for time reasons or reasons of tape capacity.

30.3.3 Practical Details

The simplest way to ”force” Bacula to use a different tape each day is to define a different Pool for each day
of the the week a backup is done. In addition, you will need to specify appropriate Job and File retention
periods so that Bacula will relabel and overwrite the tape each week rather than appending to it. Nic
Bellamy has supplied an actual working model of this which we include here.

What is important is to create a different Pool for each day of the week, and on the run statement in the
Schedule, to specify which Pool is to be used. He has one Schedule that accomplishes this, and a second
Schedule that does the same thing for the Catalog backup run each day after the main backup (Priorities
were not available when this script was written). In addition, he uses a Max Start Delay of 22 hours so
that if the wrong tape is premounted by the operator, the job will be automatically canceled, and the backup
cycle will re-synchronize the next day. He has named his Friday Pool WeeklyPool because in that Pool, he
wishes to have several tapes to be able to restore to a time older than one week.

And finally, in his Storage daemon’s Device resource, he has Automatic Mount = yes and Always Open
= No. This is necessary for the tape ejection to work in his end of backup.sh script below.

For example, his bacula-dir.conf file looks like the following:

/etc/bacula/bacula-dir.conf

#

Bacula Director Configuration file

#

Director {

Name = ServerName

DIRport = 9101

QueryFile = "/etc/bacula/query.sql"

WorkingDirectory = "/var/lib/bacula"

PidDirectory = "/var/run"

SubSysDirectory = "/var/lock/subsys"

Maximum Concurrent Jobs = 1

Password = "console-pass"

Messages = Standard

}

#

Define the main nightly save backup job

#

Job {

Name = "NightlySave"

Type = Backup

Client = ServerName

FileSet = "Full Set"

Schedule = "WeeklyCycle"

Storage = Tape

Messages = Standard

Pool = Default

Write Bootstrap = "/var/lib/bacula/NightlySave.bsr"

264 Bacula Version 5.0.3

Max Start Delay = 22h

}

Backup the catalog database (after the nightly save)

Job {

Name = "BackupCatalog"

Type = Backup

Client = ServerName

FileSet = "Catalog"

Schedule = "WeeklyCycleAfterBackup"

Storage = Tape

Messages = Standard

Pool = Default

This creates an ASCII copy of the catalog

WARNING!!! Passing the password via the command line is insecure.

see comments in make_catalog_backup for details.

RunBeforeJob = "/usr/lib/bacula/make_catalog_backup -u bacula"

This deletes the copy of the catalog, and ejects the tape

RunAfterJob = "/etc/bacula/end_of_backup.sh"

Write Bootstrap = "/var/lib/bacula/BackupCatalog.bsr"

Max Start Delay = 22h

}

Standard Restore template, changed by Console program

Job {

Name = "RestoreFiles"

Type = Restore

Client = ServerName

FileSet = "Full Set"

Storage = Tape

Messages = Standard

Pool = Default

Where = /tmp/bacula-restores

}

List of files to be backed up

FileSet {

Name = "Full Set"

Include = signature=MD5 {

/

/data

}

Exclude = { /proc /tmp /.journal }

}

#

When to do the backups

#

Schedule {

Name = "WeeklyCycle"

Run = Level=Full Pool=MondayPool Monday at 8:00pm

Run = Level=Full Pool=TuesdayPool Tuesday at 8:00pm

Run = Level=Full Pool=WednesdayPool Wednesday at 8:00pm

Run = Level=Full Pool=ThursdayPool Thursday at 8:00pm

Run = Level=Full Pool=WeeklyPool Friday at 8:00pm

}

This does the catalog. It starts after the WeeklyCycle

Schedule {

Name = "WeeklyCycleAfterBackup"

Run = Level=Full Pool=MondayPool Monday at 8:15pm

Run = Level=Full Pool=TuesdayPool Tuesday at 8:15pm

Run = Level=Full Pool=WednesdayPool Wednesday at 8:15pm

Run = Level=Full Pool=ThursdayPool Thursday at 8:15pm

Run = Level=Full Pool=WeeklyPool Friday at 8:15pm

}

This is the backup of the catalog

FileSet {

Name = "Catalog"

Include = signature=MD5 {

/var/lib/bacula/bacula.sql

}

}

Client (File Services) to backup

Client {

Name = ServerName

Address = dionysus

FDPort = 9102

Catalog = MyCatalog

Password = "client-pass"

File Retention = 30d

Bacula Version 5.0.3 265

Job Retention = 30d

AutoPrune = yes

}

Definition of file storage device

Storage {

Name = Tape

Address = dionysus

SDPort = 9103

Password = "storage-pass"

Device = Tandberg

Media Type = MLR1

}

Generic catalog service

Catalog {

Name = MyCatalog

dbname = bacula; user = bacula; password = ""

}

Reasonable message delivery -- send almost all to email address

and to the console

Messages {

Name = Standard

mailcommand = "/usr/sbin/bsmtp -h localhost -f \"\(Bacula\) %r\"

-s \"Bacula: %t %e of %c %l\" %r"

operatorcommand = "/usr/sbin/bsmtp -h localhost -f \"\(Bacula\) %r\"

-s \"Bacula: Intervention needed for %j\" %r"

mail = root@localhost = all, !skipped

operator = root@localhost = mount

console = all, !skipped, !saved

append = "/var/lib/bacula/log" = all, !skipped

}

Pool definitions

#

Default Pool for jobs, but will hold no actual volumes

Pool {

Name = Default

Pool Type = Backup

}

Pool {

Name = MondayPool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 6d

Maximum Volume Jobs = 2

}

Pool {

Name = TuesdayPool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 6d

Maximum Volume Jobs = 2

}

Pool {

Name = WednesdayPool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 6d

Maximum Volume Jobs = 2

}

Pool {

Name = ThursdayPool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 6d

Maximum Volume Jobs = 2

}

Pool {

Name = WeeklyPool

Pool Type = Backup

Recycle = yes

AutoPrune = yes

Volume Retention = 12d

266 Bacula Version 5.0.3

Maximum Volume Jobs = 2

}

EOF

Note, the mailcommand and operatorcommand should be on a single line each. They were split to preserve
the proper page width. In order to get Bacula to release the tape after the nightly backup, he uses a
RunAfterJob script that deletes the ASCII copy of the database back and then rewinds and ejects the
tape. The following is a copy of end of backup.sh

#! /bin/sh

/usr/lib/bacula/delete_catalog_backup

mt rewind

mt eject

exit 0

Finally, if you list his Volumes, you get something like the following:

*list media

Using default Catalog name=MyCatalog DB=bacula

Pool: WeeklyPool

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| 5 | Friday_1 | MLR1 | Used | 2157171998| 2003-07-11 20:20| 103680| 1 |

| 6 | Friday_2 | MLR1 | Append | 0 | 0 | 103680| 1 |

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

Pool: MondayPool

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| 2 | Monday | MLR1 | Used | 2260942092| 2003-07-14 20:20| 518400| 1 |

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

Pool: TuesdayPool

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| 3 | Tuesday | MLR1 | Used | 2268180300| 2003-07-15 20:20| 518400| 1 |

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

Pool: WednesdayPool

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| 4 | Wednesday | MLR1 | Used | 2138871127| 2003-07-09 20:2 | 518400| 1 |

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

Pool: ThursdayPool

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| MeId| VolumeName| MedTyp| VolStat| VolBytes | LastWritten | VolRet| Recyc|

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

| 1 | Thursday | MLR1 | Used | 2146276461| 2003-07-10 20:50| 518400| 1 |

+-----+-----------+-------+--------+-----------+-----------------+-------+------+

Pool: Default

No results to list.

Note, I have truncated a number of the columns so that the information fits on the width of a page.

Chapter 31

Autochanger Support

Bacula provides autochanger support for reading and writing tapes. In order to work with an autochanger,
Bacula requires a number of things, each of which is explained in more detail after this list:

• A script that actually controls the autochanger according to commands sent by Bacula. We furnish
such a script that works with mtx found in the depkgs distribution.

• That each Volume (tape) to be used must be defined in the Catalog and have a Slot number assigned
to it so that Bacula knows where the Volume is in the autochanger. This is generally done with the
label command, but can also done after the tape is labeled using the update slots command. See
below for more details. You must pre-label the tapes manually before using them.

• Modifications to your Storage daemon’s Device configuration resource to identify that the device is a
changer, as well as a few other parameters.

• You should also modify your Storage resource definition in the Director’s configuration file so that you
are automatically prompted for the Slot when labeling a Volume.

• You need to ensure that your Storage daemon (if not running as root) has access permissions to both
the tape drive and the control device.

• You need to have Autochanger = yes in your Storage resource in your bacula-dir.conf file so that
you will be prompted for the slot number when you label Volumes.

In version 1.37 and later, there is a new Autochanger resource that permits you to group Device resources
thus creating a multi-drive autochanger. If you have an autochanger, you must use this new resource.

Bacula uses its own mtx-changer script to interface with a program that actually does the tape changing.
Thus in principle, mtx-changer can be adapted to function with any autochanger program, or you can call
any other script or program. The current version of mtx-changer works with the mtx program. However,
FreeBSD users have provided a script in the examples/autochangers directory that allows Bacula to use
the chio program.

Bacula also supports autochangers with barcode readers. This support includes two Console commands:
label barcodes and update slots. For more details on these commands, see the ”Barcode Support”
section below.

Current Bacula autochanger support does not include cleaning, stackers, or silos. Stackers and silos are not
supported because Bacula expects to be able to access the Slots randomly. However, if you are very careful
to setup Bacula to access the Volumes in the autochanger sequentially, you may be able to make Bacula
work with stackers (gravity feed and such).

Support for multi-drive autochangers requires the Autochanger resource introduced in version 1.37. This
resource is also recommended for single drive autochangers.

267

268 Bacula Version 5.0.3

In principle, if mtx will operate your changer correctly, then it is just a question of adapting the mtx-
changer script (or selecting one already adapted) for proper interfacing. You can find a list of autochangers
supported by mtx at the following link: http://mtx.opensource-sw.net/compatibility.php. The home page
for the mtx project can be found at: http://mtx.opensource-sw.net/.

Note, we have feedback from some users that there are certain incompatibilities between the Linux kernel
and mtx. For example between kernel 2.6.18-8.1.8.el5 of CentOS and RedHat and version 1.3.10 and 1.3.11
of mtx. This was fixed by upgrading to a version 2.6.22 kernel.

In addition, apparently certain versions of mtx, for example, version 1.3.11 limit the number of slots to a
maximum of 64. The solution was to use version 1.3.10.

If you are having troubles, please use the auto command in the btape program to test the functioning of
your autochanger with Bacula. When Bacula is running, please remember that for many distributions (e.g.
FreeBSD, Debian, ...) the Storage daemon runs as bacula.tape rather than root.root, so you will need to
ensure that the Storage daemon has sufficient permissions to access the autochanger.

Some users have reported that the the Storage daemon blocks under certain circumstances in trying to mount
a volume on a drive that has a different volume loaded. As best we can determine, this is simply a matter
of waiting a bit. The drive was previously in use writing a Volume, and sometimes the drive will remain
BLOCKED for a good deal of time (up to 7 minutes on a slow drive) waiting for the cassette to rewind and
to unload before the drive can be used with a different Volume.

31.1 Knowing What SCSI Devices You Have

Under Linux, you can

cat /proc/scsi/scsi

to see what SCSI devices you have available. You can also:

cat /proc/scsi/sg/device_hdr /proc/scsi/sg/devices

to find out how to specify their control address (/dev/sg0 for the first, /dev/sg1 for the second, ...) on
the Changer Device = Bacula directive.

You can also use the excellent lsscsi tool.

$ lsscsi -g

[1:0:2:0] tape SEAGATE ULTRIUM06242-XXX 1619 /dev/st0 /dev/sg9

[1:0:14:0] mediumx STK L180 0315 /dev/sch0 /dev/sg10

[2:0:3:0] tape HP Ultrium 3-SCSI G24S /dev/st1 /dev/sg11

[3:0:0:0] enclosu HP A6255A HP04 - /dev/sg3

[3:0:1:0] disk HP 36.4G ST336753FC HP00 /dev/sdd /dev/sg4

For more detailed information on what SCSI devices you have please see the Linux SCSI Tricks section of
the Tape Testing chapter of this manual.

Under FreeBSD, you can use:

camcontrol devlist

To list the SCSI devices as well as the /dev/passn that you will use on the Bacula Changer Device =
directive.

Please check that your Storage daemon has permission to access this device.

http://mtx.opensource-sw.net/compatibility.php
http://mtx.opensource-sw.net/

Bacula Version 5.0.3 269

The following tip for FreeBSD users comes from Danny Butroyd: on reboot Bacula will NOT have permission
to control the device /dev/pass0 (assuming this is your changer device). To get around this just edit the
/etc/devfs.conf file and add the following to the bottom:

own pass0 root:bacula

perm pass0 0666

own nsa0.0 root:bacula

perm nsa0.0 0666

This gives the bacula group permission to write to the nsa0.0 device too just to be on the safe side. To bring
these changes into effect just run:-

/etc/rc.d/devfs restart

Basically this will stop you having to manually change permissions on these devices to make Bacula work
when operating the AutoChanger after a reboot.

31.2 Example Scripts

Please read the sections below so that you understand how autochangers work with Bacula. Although we
supply a default mtx-changer script, your autochanger may require some additional changes. If you want
to see examples of configuration files and scripts, please look in the <bacula-src>/examples/devices
directory where you will find an example HP-autoloader.conf Bacula Device resource, and several mtx-
changer scripts that have been modified to work with different autochangers.

31.3 Slots

To properly address autochangers, Bacula must know which Volume is in each slot of the autochanger. Slots
are where the changer cartridges reside when not loaded into the drive. Bacula numbers these slots from
one to the number of cartridges contained in the autochanger.

Bacula will not automatically use a Volume in your autochanger unless it is labeled and the slot number is
stored in the catalog and the Volume is marked as InChanger. This is because it must know where each
volume is (slot) to be able to load the volume. For each Volume in your changer, you will, using the Console
program, assign a slot. This information is kept in Bacula’s catalog database along with the other data for
the volume. If no slot is given, or the slot is set to zero, Bacula will not attempt to use the autochanger even
if all the necessary configuration records are present. When doing a mount command on an autochanger,
you must specify which slot you want mounted. If the drive is loaded with a tape from another slot, it will
unload it and load the correct tape, but normally, no tape will be loaded because an unmount command
causes Bacula to unload the tape in the drive.

You can check if the Slot number and InChanger flag are set by doing a:

list Volumes

in the Console program.

31.4 Multiple Devices

Some autochangers have more than one read/write device (drive). The new Autochanger resource introduced
in version 1.37 permits you to group Device resources, where each device represents a drive. The Director
may still reference the Devices (drives) directly, but doing so, bypasses the proper functioning of the drives
together. Instead, the Director (in the Storage resource) should reference the Autochanger resource name.

270 Bacula Version 5.0.3

Doing so permits the Storage daemon to ensure that only one drive uses the mtx-changer script at a time,
and also that two drives don’t reference the same Volume.

Multi-drive requires the use of the Drive Index directive in the Device resource of the Storage daemon’s
configuration file. Drive numbers or the Device Index are numbered beginning at zero, which is the default.
To use the second Drive in an autochanger, you need to define a second Device resource and set the Drive
Index to 1 for that device. In general, the second device will have the same Changer Device (control
channel) as the first drive, but a different Archive Device.

As a default, Bacula jobs will prefer to write to a Volume that is already mounted. If you have a multiple
drive autochanger and you want Bacula to write to more than one Volume in the same Pool at the same
time, you will need to set Prefer Mounted Volumes in the Directors Job resource to no. This will cause the
Storage daemon to maximize the use of drives.

31.5 Device Configuration Records

Configuration of autochangers within Bacula is done in the Device resource of the Storage daemon. Four
records: Autochanger, Changer Device, Changer Command, and Maximum Changer Wait control
how Bacula uses the autochanger.

These four records, permitted in Device resources, are described in detail below. Note, however, that the
Changer Device and the Changer Command directives are not needed in the Device resource if they
are present in the Autochanger resource.

Autochanger = Yes—No The Autochanger record specifies that the current device is or is not an
autochanger. The default is no.

Changer Device = <device-name> In addition to the Archive Device name, you must specify a
Changer Device name. This is because most autochangers are controlled through a different de-
vice than is used for reading and writing the cartridges. For example, on Linux, one normally uses
the generic SCSI interface for controlling the autochanger, but the standard SCSI interface for read-
ing and writing the tapes. On Linux, for the Archive Device = /dev/nst0, you would typically
have Changer Device = /dev/sg0. Note, some of the more advanced autochangers will locate the
changer device on /dev/sg1. Such devices typically have several drives and a large number of tapes.

On FreeBSD systems, the changer device will typically be on /dev/pass0 through /dev/passn.

On Solaris, the changer device will typically be some file under /dev/rdsk.

Please ensure that your Storage daemon has permission to access this device.

Changer Command = <command> This record is used to specify the external program to call and
what arguments to pass to it. The command is assumed to be a standard program or shell script that
can be executed by the operating system. This command is invoked each time that Bacula wishes to
manipulate the autochanger. The following substitutions are made in the command before it is sent
to the operating system for execution:

%% = %

%a = archive device name

%c = changer device name

%d = changer drive index base 0

%f = Client’s name

%j = Job name

%o = command (loaded, load, or unload)

%s = Slot base 0

%S = Slot base 1

%v = Volume name

An actual example for using mtx with the mtx-changer script (part of the Bacula distribution) is:

Changer Command = "/etc/bacula/mtx-changer %c %o %S %a %d"

Bacula Version 5.0.3 271

Where you will need to adapt the /etc/bacula to be the actual path on your system where the mtx-
changer script resides. Details of the three commands currently used by Bacula (loaded, load, unload)
as well as the output expected by Bacula are give in the Bacula Autochanger Interface section
below.

Maximum Changer Wait = <time> This record is used to define the maximum amount of time that
Bacula will wait for an autoloader to respond to a command (e.g. load). The default is set to 120
seconds. If you have a slow autoloader you may want to set it longer.

If the autoloader program fails to respond in this time, it will be killed and Bacula will request operator
intervention.

Drive Index = <number> This record allows you to tell Bacula to use the second or subsequent drive
in an autochanger with multiple drives. Since the drives are numbered from zero, the second drive is
defined by

Device Index = 1

To use the second drive, you need a second Device resource definition in the Bacula configuration file.
See the Multiple Drive section above in this chapter for more information.

In addition, for proper functioning of the Autochanger, you must define an Autochanger resource.

272 Bacula Version 5.0.3

Chapter 32

Autochanger Resource

The Autochanger resource supports single or multiple drive autochangers by grouping one or more Device
resources into one unit called an autochanger in Bacula (often referred to as a ”tape library” by autochanger
manufacturers).

If you have an Autochanger, and you want it to function correctly, you must have an Autochanger resource
in your Storage conf file, and your Director’s Storage directives that want to use an Autochanger must refer
to the Autochanger resource name. In previous versions of Bacula, the Director’s Storage directives referred
directly to Device resources that were autochangers. In version 1.38.0 and later, referring directly to Device
resources will not work for Autochangers.

Name = <Autochanger-Name> Specifies the Name of the Autochanger. This name is used in the
Director’s Storage definition to refer to the autochanger. This directive is required.

Device = <Device-name1, device-name2, ...> Specifies the names of the Device resource or resources
that correspond to the autochanger drive. If you have a multiple drive autochanger, you must specify
multiple Device names, each one referring to a separate Device resource that contains a Drive Index
specification that corresponds to the drive number base zero. You may specify multiple device names
on a single line separated by commas, and/or you may specify multiple Device directives. This directive
is required.

Changer Device = name-string The specified name-string gives the system file name of the autochanger
device name. If specified in this resource, the Changer Device name is not needed in the Device resource.
If it is specified in the Device resource (see above), it will take precedence over one specified in the
Autochanger resource.

Changer Command = name-string The name-string specifies an external program to be called that will
automatically change volumes as required by Bacula. Most frequently, you will specify the Bacula
supplied mtx-changer script as follows. If it is specified here, it need not be specified in the Device
resource. If it is also specified in the Device resource, it will take precedence over the one specified in
the Autochanger resource.

The following is an example of a valid Autochanger resource definition:

Autochanger {

Name = "DDS-4-changer"

Device = DDS-4-1, DDS-4-2, DDS-4-3

Changer Device = /dev/sg0

Changer Command = "/etc/bacula/mtx-changer %c %o %S %a %d"

}

Device {

Name = "DDS-4-1"

Drive Index = 0

Autochanger = yes

...

}

273

274 Bacula Version 5.0.3

Device {

Name = "DDS-4-2"

Drive Index = 1

Autochanger = yes

...

Device {

Name = "DDS-4-3"

Drive Index = 2

Autochanger = yes

Autoselect = no

...

}

Please note that it is important to include the Autochanger = yes directive in each Device definition that
belongs to an Autochanger. A device definition should not belong to more than one Autochanger resource.
Also, your Device directive in the Storage resource of the Director’s conf file should have the Autochanger’s
resource name rather than a name of one of the Devices.

If you have a drive that physically belongs to an Autochanger but you don’t want to have it automatically
used when Bacula references the Autochanger for backups, for example, you want to reserve it for restores,
you can add the directive:

Autoselect = no

to the Device resource for that drive. In that case, Bacula will not automatically select that drive when
accessing the Autochanger. You can, still use the drive by referencing it by the Device name directly rather
than the Autochanger name. An example of such a definition is shown above for the Device DDS-4-3, which
will not be selected when the name DDS-4-changer is used in a Storage definition, but will be used if DDS-4-3
is used.

32.1 An Example Configuration File

The following two resources implement an autochanger:

Autochanger {

Name = "Autochanger"

Device = DDS-4

Changer Device = /dev/sg0

Changer Command = "/etc/bacula/mtx-changer %c %o %S %a %d"

}

Device {

Name = DDS-4

Media Type = DDS-4

Archive Device = /dev/nst0 # Normal archive device

Autochanger = yes

LabelMedia = no;

AutomaticMount = yes;

AlwaysOpen = yes;

}

where you will adapt theArchive Device, theChanger Device, and the path to theChanger Command
to correspond to the values used on your system.

32.2 A Multi-drive Example Configuration File

The following resources implement a multi-drive autochanger:

Bacula Version 5.0.3 275

Autochanger {

Name = "Autochanger"

Device = Drive-1, Drive-2

Changer Device = /dev/sg0

Changer Command = "/etc/bacula/mtx-changer %c %o %S %a %d"

}

Device {

Name = Drive-1

Drive Index = 0

Media Type = DDS-4

Archive Device = /dev/nst0 # Normal archive device

Autochanger = yes

LabelMedia = no;

AutomaticMount = yes;

AlwaysOpen = yes;

}

Device {

Name = Drive-2

Drive Index = 1

Media Type = DDS-4

Archive Device = /dev/nst1 # Normal archive device

Autochanger = yes

LabelMedia = no;

AutomaticMount = yes;

AlwaysOpen = yes;

}

where you will adapt theArchive Device, theChanger Device, and the path to theChanger Command
to correspond to the values used on your system.

32.3 Specifying Slots When Labeling

If you add an Autochanger = yes record to the Storage resource in your Director’s configuration file, the
Bacula Console will automatically prompt you for the slot number when the Volume is in the changer when
you add or label tapes for that Storage device. If your mtx-changer script is properly installed, Bacula
will automatically load the correct tape during the label command.

You must also set Autochanger = yes in the Storage daemon’s Device resource as we have described above
in order for the autochanger to be used. Please see the Storage Resource in the Director’s chapter and the
Device Resource in the Storage daemon chapter for more details on these records.

Thus all stages of dealing with tapes can be totally automated. It is also possible to set or change the Slot
using the update command in the Console and selecting Volume Parameters to update.

Even though all the above configuration statements are specified and correct, Bacula will attempt to access
the autochanger only if a slot is non-zero in the catalog Volume record (with the Volume name).

If your autochanger has barcode labels, you can label all the Volumes in your autochanger one after another
by using the label barcodes command. For each tape in the changer containing a barcode, Bacula will
mount the tape and then label it with the same name as the barcode. An appropriate Media record will
also be created in the catalog. Any barcode that begins with the same characters as specified on the
”CleaningPrefix=xxx” command, will be treated as a cleaning tape, and will not be labeled. For example
with:

Please note that Volumes must be pre-labeled to be automatically used in the autochanger during a backup.
If you do not have a barcode reader, this is done manually (or via a script).

Pool {

Name ...

Cleaning Prefix = "CLN"

}

276 Bacula Version 5.0.3

Any slot containing a barcode of CLNxxxx will be treated as a cleaning tape and will not be mounted.

32.4 Changing Cartridges

If you wish to insert or remove cartridges in your autochanger or you manually run the mtx program, you
must first tell Bacula to release the autochanger by doing:

unmount

(change cartridges and/or run mtx)

mount

If you do not do the unmount before making such a change, Bacula will become completely confused about
what is in the autochanger and may stop function because it expects to have exclusive use of the autochanger
while it has the drive mounted.

32.5 Dealing with Multiple Magazines

If you have several magazines or if you insert or remove cartridges from a magazine, you should notify Bacula
of this. By doing so, Bacula will as a preference, use Volumes that it knows to be in the autochanger before
accessing Volumes that are not in the autochanger. This prevents unneeded operator intervention.

If your autochanger has barcodes (machine readable tape labels), the task of informing Bacula is simple.
Every time, you change a magazine, or add or remove a cartridge from the magazine, simply do

unmount

(remove magazine)

(insert new magazine)

update slots

mount

in the Console program. This will cause Bacula to request the autochanger to return the current Volume
names in the magazine. This will be done without actually accessing or reading the Volumes because the
barcode reader does this during inventory when the autochanger is first turned on. Bacula will ensure that
any Volumes that are currently marked as being in the magazine are marked as no longer in the magazine,
and the new list of Volumes will be marked as being in the magazine. In addition, the Slot numbers of the
Volumes will be corrected in Bacula’s catalog if they are incorrect (added or moved).

If you do not have a barcode reader on your autochanger, you have several alternatives.

1. You can manually set the Slot and InChanger flag using the update volume command in the Console
(quite painful).

2. You can issue a

update slots scan

command that will cause Bacula to read the label on each of the cartridges in the magazine in turn
and update the information (Slot, InChanger flag) in the catalog. This is quite effective but does take
time to load each cartridge into the drive in turn and read the Volume label.

3. You can modify the mtx-changer script so that it simulates an autochanger with barcodes. See below
for more details.

Bacula Version 5.0.3 277

32.6 Simulating Barcodes in your Autochanger

You can simulate barcodes in your autochanger by making the mtx-changer script return the same infor-
mation that an autochanger with barcodes would do. This is done by commenting out the one and only line
in the list) case, which is:

${MTX} -f $ctl status | grep " *Storage Element [0-9]*:.*Full" | awk "{print \$3 \$4}" | sed "s/Full *\(:VolumeTag=\)*//"

at approximately line 99 by putting a # in column one of that line, or by simply deleting it. Then in its
place add a new line that prints the contents of a file. For example:

cat /etc/bacula/changer.volumes

Be sure to include a full path to the file, which can have any name. The contents of the file must be of the
following format:

1:Volume1

2:Volume2

3:Volume3

...

Where the 1, 2, 3 are the slot numbers and Volume1, Volume2, ... are the Volume names in those slots. You
can have multiple files that represent the Volumes in different magazines, and when you change magazines,
simply copy the contents of the correct file into your /etc/bacula/changer.volumes file. There is no need
to stop and start Bacula when you change magazines, simply put the correct data in the file, then run the
update slots command, and your autochanger will appear to Bacula to be an autochanger with barcodes.

32.7 The Full Form of the Update Slots Command

If you change only one cartridge in the magazine, you may not want to scan all Volumes, so the update
slots command (as well as the update slots scan command) has the additional form:

update slots=n1,n2,n3-n4, ...

where the keyword scan can be appended or not. The n1,n2, ... represent Slot numbers to be updated and
the form n3-n4 represents a range of Slot numbers to be updated (e.g. 4-7 will update Slots 4,5,6, and 7).

This form is particularly useful if you want to do a scan (time expensive) and restrict the update to one or
two slots.

For example, the command:

update slots=1,6 scan

will cause Bacula to load the Volume in Slot 1, read its Volume label and update the Catalog. It will do the
same for the Volume in Slot 6. The command:

update slots=1-3,6

will read the barcoded Volume names for slots 1,2,3 and 6 and make the appropriate updates in the Catalog.
If you don’t have a barcode reader or have not modified the mtx-changer script as described above, the above
command will not find any Volume names so will do nothing.

278 Bacula Version 5.0.3

32.8 FreeBSD Issues

If you are having problems on FreeBSD when Bacula tries to select a tape, and the message is Device not
configured, this is because FreeBSD has made the tape device /dev/nsa1 disappear when there is no tape
mounted in the autochanger slot. As a consequence, Bacula is unable to open the device. The solution to the
problem is to make sure that some tape is loaded into the tape drive before starting Bacula. This problem
is corrected in Bacula versions 1.32f-5 and later.

Please see the Tape Testing chapter of this manual for important information concerning your tape drive
before doing the autochanger testing.

32.9 Testing Autochanger and Adapting mtx-changer script

Before attempting to use the autochanger with Bacula, it is preferable to ”hand-test” that the changer works.
To do so, we suggest you do the following commands (assuming that the mtx-changer script is installed in
/etc/bacula/mtx-changer):

Make sure Bacula is not running.

/etc/bacula/mtx-changer /dev/sg0 list 0 /dev/nst0 0 This command should print:

1:

2:

3:

...

or one number per line for each slot that is occupied in your changer, and the number should be
terminated by a colon (:). If your changer has barcodes, the barcode will follow the colon. If an error
message is printed, you must resolve the problem (e.g. try a different SCSI control device name if
/dev/sg0 is incorrect). For example, on FreeBSD systems, the autochanger SCSI control device is
generally /dev/pass2.

/etc/bacula/mtx-changer /dev/sg0 slots This command should return the number of slots in your
autochanger.

/etc/bacula/mtx-changer /dev/sg0 unload 1 /dev/nst0 0 If a tape is loaded from slot 1, this
should cause it to be unloaded.

/etc/bacula/mtx-changer /dev/sg0 load 3 /dev/nst0 0 Assuming you have a tape in slot 3, it
will be loaded into drive (0).

/etc/bacula/mtx-changer /dev/sg0 loaded 0 /dev/nst0 0 It should print ”3” Note, we have
used an ”illegal” slot number 0. In this case, it is simply ignored because the slot number is not
used. However, it must be specified because the drive parameter at the end of the command is needed
to select the correct drive.

/etc/bacula/mtx-changer /dev/sg0 unload 3 /dev/nst0 0 will unload the tape into slot 3.

Once all the above commands work correctly, assuming that you have the right Changer Command in
your configuration, Bacula should be able to operate the changer. The only remaining area of problems
will be if your autoloader needs some time to get the tape loaded after issuing the command. After the
mtx-changer script returns, Bacula will immediately rewind and read the tape. If Bacula gets rewind I/O
errors after a tape change, you will probably need to insert a sleep 20 after the mtx command, but be
careful to exit the script with a zero status by adding exit 0 after any additional commands you add to the
script. This is because Bacula checks the return status of the script, which should be zero if all went well.

You can test whether or not you need a sleep by putting the following commands into a file and running it
as a script:

Bacula Version 5.0.3 279

#!/bin/sh

/etc/bacula/mtx-changer /dev/sg0 unload 1 /dev/nst0 0

/etc/bacula/mtx-changer /dev/sg0 load 3 /dev/nst0 0

mt -f /dev/st0 rewind

mt -f /dev/st0 weof

If the above script runs, you probably have no timing problems. If it does not run, start by putting a sleep
30 or possibly a sleep 60 in the script just after the mtx-changer load command. If that works, then you
should move the sleep into the actual mtx-changer script so that it will be effective when Bacula runs.

A second problem that comes up with a small number of autochangers is that they need to have the cartridge
ejected before it can be removed. If this is the case, the load 3 will never succeed regardless of how long
you wait. If this seems to be your problem, you can insert an eject just after the unload so that the script
looks like:

#!/bin/sh

/etc/bacula/mtx-changer /dev/sg0 unload 1 /dev/nst0 0

mt -f /dev/st0 offline

/etc/bacula/mtx-changer /dev/sg0 load 3 /dev/nst0 0

mt -f /dev/st0 rewind

mt -f /dev/st0 weof

Obviously, if you need the offline command, you should move it into the mtx-changer script ensuring that
you save the status of the mtx command or always force an exit 0 from the script, because Bacula checks
the return status of the script.

As noted earlier, there are several scripts in <bacula-source>/examples/devices that implement the
above features, so they may be a help to you in getting your script to work.

If Bacula complains ”Rewind error on /dev/nst0. ERR=Input/output error.” you most likely need more
sleep time in your mtx-changer before returning to Bacula after a load command has been completed.

32.10 Using the Autochanger

Let’s assume that you have properly defined the necessary Storage daemon Device records, and you have
added the Autochanger = yes record to the Storage resource in your Director’s configuration file.

Now you fill your autochanger with say six blank tapes.

What do you do to make Bacula access those tapes?

One strategy is to prelabel each of the tapes. Do so by starting Bacula, then with the Console program,
enter the label command:

./bconsole

Connecting to Director rufus:8101

1000 OK: rufus-dir Version: 1.26 (4 October 2002)

*label

it will then print something like:

Using default Catalog name=BackupDB DB=bacula

The defined Storage resources are:

1: Autochanger

2: File

Select Storage resource (1-2): 1

I select the autochanger (1), and it prints:

280 Bacula Version 5.0.3

Enter new Volume name: TestVolume1

Enter slot (0 for none): 1

where I entered TestVolume1 for the tape name, and slot 1 for the slot. It then asks:

Defined Pools:

1: Default

2: File

Select the Pool (1-2): 1

I select the Default pool. This will be automatically done if you only have a single pool, then Bacula will
proceed to unload any loaded volume, load the volume in slot 1 and label it. In this example, nothing was
in the drive, so it printed:

Connecting to Storage daemon Autochanger at localhost:9103 ...

Sending label command ...

3903 Issuing autochanger "load slot 1" command.

3000 OK label. Volume=TestVolume1 Device=/dev/nst0

Media record for Volume=TestVolume1 successfully created.

Requesting mount Autochanger ...

3001 Device /dev/nst0 is mounted with Volume TestVolume1

You have messages.

*

You may then proceed to label the other volumes. The messages will change slightly because Bacula will
unload the volume (just labeled TestVolume1) before loading the next volume to be labeled.

Once all your Volumes are labeled, Bacula will automatically load them as they are needed.

To ”see” how you have labeled your Volumes, simply enter the list volumes command from the Console
program, which should print something like the following:

*{\bf list volumes}

Using default Catalog name=BackupDB DB=bacula

Defined Pools:

1: Default

2: File

Select the Pool (1-2): 1

+-------+----------+--------+---------+-------+--------+----------+-------+------+

| MedId | VolName | MedTyp | VolStat | Bites | LstWrt | VolReten | Recyc | Slot |

+-------+----------+--------+---------+-------+--------+----------+-------+------+

| 1 | TestVol1 | DDS-4 | Append | 0 | 0 | 30672000 | 0 | 1 |

| 2 | TestVol2 | DDS-4 | Append | 0 | 0 | 30672000 | 0 | 2 |

| 3 | TestVol3 | DDS-4 | Append | 0 | 0 | 30672000 | 0 | 3 |

| ... |

+-------+----------+--------+---------+-------+--------+----------+-------+------+

32.11 Barcode Support

Bacula provides barcode support with two Console commands, label barcodes and update slots.

The label barcodes will cause Bacula to read the barcodes of all the cassettes that are currently installed
in the magazine (cassette holder) using the mtx-changer list command. Each cassette is mounted in turn
and labeled with the same Volume name as the barcode.

The update slots command will first obtain the list of cassettes and their barcodes from mtx-changer.
Then it will find each volume in turn in the catalog database corresponding to the barcodes and set its Slot
to correspond to the value just read. If the Volume is not in the catalog, then nothing will be done. This
command is useful for synchronizing Bacula with the current magazine in case you have changed magazines

Bacula Version 5.0.3 281

or in case you have moved cassettes from one slot to another. If the autochanger is empty, nothing will be
done.

The Cleaning Prefix statement can be used in the Pool resource to define a Volume name prefix, which if
it matches that of the Volume (barcode) will cause that Volume to be marked with a VolStatus of Cleaning.
This will prevent Bacula from attempting to write on the Volume.

32.12 Use bconsole to display Autochanger content

The status slots storage=xxx command displays autochanger content.

Slot | Volume Name | Status | Type | Pool | Loaded |

------+-----------------+----------+-------------------+----------------+---------|

1 | 00001 | Append | DiskChangerMedia | Default | 0 |

2 | 00002 | Append | DiskChangerMedia | Default | 0 |

3*| 00003 | Append | DiskChangerMedia | Scratch | 0 |

4 | | | | | 0 |

If you see a * near the slot number, you have to run update slots command to synchronize autochanger
content with your catalog.

32.13 Bacula Autochanger Interface

Bacula calls the autochanger script that you specify on the Changer Command statement. Normally
this script will be the mtx-changer script that we provide, but it can in fact be any program. The only
requirement for the script is that it must understand the commands that Bacula uses, which are loaded,
load, unload, list, and slots. In addition, each of those commands must return the information in the
precise format as specified below:

- Currently the changer commands used are:

loaded -- returns number of the slot that is loaded, base 1,

in the drive or 0 if the drive is empty.

load -- loads a specified slot (note, some autochangers

require a 30 second pause after this command) into

the drive.

unload -- unloads the device (returns cassette to its slot).

list -- returns one line for each cassette in the autochanger

in the format <slot>:<barcode>. Where

the {\bf slot} is the non-zero integer representing

the slot number, and {\bf barcode} is the barcode

associated with the cassette if it exists and if you

autoloader supports barcodes. Otherwise the barcode

field is blank.

slots -- returns total number of slots in the autochanger.

Bacula checks the exit status of the program called, and if it is zero, the data is accepted. If the exit status
is non-zero, Bacula will print an error message and request the tape be manually mounted on the drive.

282 Bacula Version 5.0.3

Chapter 33

Supported Autochangers

I hesitate to call these ”supported” autochangers because the only autochangers that I have in my possession
and am able to test are the HP SureStore DAT40X6 and the Overland PowerLoader LTO-2. All the other
autochangers have been reported to work by Bacula users. Note, in the Capacity/Slot column below, I quote
the Compressed capacity per tape (or Slot).

Since on most systems (other than FreeBSD), Bacula usesmtx through themtx-changer script, in principle,
if mtx will operate your changer correctly, then it is just a question of adapting the mtx-changer script
(or selecting one already adapted) for proper interfacing. You can find a list of autochangers supported by
mtx at the following link: http://mtx.opensource-sw.net/compatibility.php. The home page for the mtx
project can be found at: http://mtx.opensource-sw.net/.

OS Man. Media Model Slots Cap/Slot
Linux Adic DDS-3 Adic 1200G 12 -
Linux Adic DLT FastStore

4000
7 20GB

Linux Adic LTO-1/2, SDLT 320 Adic Scalar
24

24 100GB

Linux Adic LTO-2 Adic Fast-
Stor 2, Sun
Storedge L8

8 200GB

Linux BDT AIT BDT Thin-
Stor

? 200GB

- CA-VM ?? Tape ?? ??
Linux Dell DLT VI,LTO-2,LTO3 PowerVault

122T/132T/136T
- 100GB

Linux Dell LTO-2 PowerVault
124T

- 200GB

- DFSMS ?? VM RMM - ??
Linux Exabyte VXA2 VXA Packet-

Loader 1x10
2U

10 80/160GB

- Exabyte LTO Magnum 1x7
LTO Tape
Auotloader

7 200/400GB

Linux Exabyte AIT-2 215A 15 (2
drives)

50GB

Linux HP DDS-4 SureStore
DAT-40X6

6 40GB

Linux HP Ultrium-2/LTO MSL 6000/
60030/ 5052

28 200/400GB

- HP DLT A4853 DLT 30 40/70GB

283

http://mtx.opensource-sw.net/compatibility.php
http://mtx.opensource-sw.net/

284 Bacula Version 5.0.3

Linux HP (Com-
paq)

DLT VI Compaq TL-
895

96+4
import
export

35/70GB

z/VM IBM ?? IBM Tape
Manager

- ??

z/VM IBM ?? native tape - ??
Linux IBM LTO IBM 3581

Ultrium
Tape Loader

7 200/400GB

FreeBSD
5.4

IBM DLT IBM 3502-
R14 – re-
branded
ATL L-500

14 35/70GB

Linux IBM ??? IBM To-
talStorage
3582L23

?? ??

Debian Overland LTO Overland
Load-
erXpress
LTO/DLT8000

10-19 40-100GB

Fedora Overland LTO Overland
PowerLoader
LTO-2

10-19 200/400GB

FreeBSD
5.4-Stable

Overland LTO-2 Overland
Powerloader
tape

17 100GB

- Overland LTO Overland
Neo2000
LTO

26-30 100GB

Linux Quantum DLT-S4 Superloader
3

16 800/1600GB

Linux Quantum LTO-2 Superloader
3

16 200/400GB

Linux Quantum LTO-3 PX502 ?? ??
FreeBSD
4.9

QUALSTAR
TLS-4210
(Qualstar)

AIT1: 36GB, AIT2: 50GB all
uncomp

QUALSTAR
TLS-4210

12 AIT1:
36GB,
AIT2:
50GB all
uncomp

Linux Skydata DLT ATL-L200 8 40/80
- Sony DDS-4 TSL-11000 8 40GB
Linux Sony AIT-2 LIB-

304(SDX-
500C)

? 200GB

Linux Sony AIT-3 LIB-D81) ? 200GB
FreeBSD
4.9-
STABLE

Sony AIT-1 TSL-SA300C 4 45/70GB

- Storagetek DLT Timberwolf
DLT

6 40/70

- Storagetek ?? ACSLS ?? ??
Solaris Sun 4mm DLT Sun Desk-

top Archive
Python
29279

4 20GB

Linux Tandberg DLT VI VS 640 8? 35/70GB

Bacula Version 5.0.3 285

Linux
2.6.x

Tandberg
Data

SLR100 SLR100 Au-
toloader

8 50/100GB

286 Bacula Version 5.0.3

Chapter 34

Data Spooling

Bacula allows you to specify that you want the Storage daemon to initially write your data to disk and then
subsequently to tape. This serves several important purposes.

• It takes a long time for data to come in from the File daemon during an Incremental backup. If it is
directly written to tape, the tape will start and stop or shoe-shine as it is often called causing tape
wear. By first writing the data to disk, then writing it to tape, the tape can be kept in continual
motion.

• While the spooled data is being written to the tape, the despooling process has exclusive use of
the tape. This means that you can spool multiple simultaneous jobs to disk, then have them very
efficiently despooled one at a time without having the data blocks from several jobs intermingled, thus
substantially improving the time needed to restore files. While despooling, all jobs spooling continue
running.

• Writing to a tape can be slow. By first spooling your data to disk, you can often reduce the time
the File daemon is running on a system, thus reducing downtime, and/or interference with users. Of
course, if your spool device is not large enough to hold all the data from your File daemon, you may
actually slow down the overall backup.

Data spooling is exactly that ”spooling”. It is not a way to first write a ”backup” to a disk file and then to
a tape. When the backup has only been spooled to disk, it is not complete yet and cannot be restored until
it is written to tape.

Bacula version 1.39.x and later supports writing a backup to disk then later Migrating or moving it to a
tape (or any other medium). For details on this, please see the Migration chapter of this manual for more
details.

The remainder of this chapter explains the various directives that you can use in the spooling process.

34.1 Data Spooling Directives

The following directives can be used to control data spooling.

• To turn data spooling on/off at the Job level in the Job resource in the Director’s conf file (default
no).

SpoolData = yes|no

• To override the Job specification in a Schedule Run directive in the Director’s conf file.

SpoolData = yes|no

287

288 Bacula Version 5.0.3

• To override the Job specification in a bconsole session using the run command. Please note that this
does not refer to a configuration statement, but to an argument for the run command.

SpoolData=yes|no

• To limit the the maximum spool file size for a particular job in the Job resource

Spool Size = size Where size is a the maximum spool size for this job specified in bytes.

• To limit the maximum total size of the spooled data for a particular device. Specified in the Device
resource of the Storage daemon’s conf file (default unlimited).

Maximum Spool Size = size Where size is a the maximum spool size for all jobs specified in bytes.

• To limit the maximum total size of the spooled data for a particular device for a single job. Specified
in the Device Resource of the Storage daemon’s conf file (default unlimited).

Maximum Job Spool Size = size Where size is the maximum spool file size for a single job specified
in bytes.

• To specify the spool directory for a particular device. Specified in the Device Resource of the Storage
daemon’s conf file (default, the working directory).

Spool Directory = directory

34.2 !!! MAJOR WARNING !!!

Please be very careful to exclude the spool directory from any backup, otherwise, your job will write enormous
amounts of data to the Volume, and most probably terminate in error. This is because in attempting to
backup the spool file, the backup data will be written a second time to the spool file, and so on ad infinitum.

Another advice is to always specify the maximum spool size so that your disk doesn’t completely fill up.
In principle, data spooling will properly detect a full disk, and despool data allowing the job to continue.
However, attribute spooling is not so kind to the user. If the disk on which attributes are being spooled
fills, the job will be canceled. In addition, if your working directory is on the same partition as the spool
directory, then Bacula jobs will fail possibly in bizarre ways when the spool fills.

34.3 Other Points

• When data spooling is enabled, Bacula automatically turns on attribute spooling. In other words, it
also spools the catalog entries to disk. This is done so that in case the job fails, there will be no catalog
entries pointing to non-existent tape backups.

• Attribute despooling occurs near the end of a job. The Storage daemon accumulates file attributes
during the backup and sends them to the Director at the end of the job. The Director then inserts the
file attributes into the catalog. During this insertion, the tape drive may be inactive. When the file
attribute insertion is completed, the job terminates.

• Attribute spool files are always placed in the working directory of the Storage daemon.

• When Bacula begins despooling data spooled to disk, it takes exclusive use of the tape. This has the
major advantage that in running multiple simultaneous jobs at the same time, the blocks of several
jobs will not be intermingled.

• It probably does not make a lot of sense to enable data spooling if you are writing to disk files.

• It is probably best to provide as large a spool file as possible to avoid repeatedly spooling/despooling.
Also, while a job is despooling to tape, the File daemon must wait (i.e. spooling stops for the job while
it is despooling).

• If you are running multiple simultaneous jobs, Bacula will continue spooling other jobs while one is
despooling to tape, provided there is sufficient spool file space.

Chapter 35

Using Bacula catalog to grab
information

Bacula catalog contains lot of information about your IT infrastructure, how many files, their size, the
number of video or music files etc. Using Bacula catalog during the day to get them permit to save resources
on your servers.

In this chapter, you will find tips and information to measure bacula efficiency and report statistics.

35.1 Job statistics

If you (or probably your boss) want to have statistics on your backups to provide some Service Level
Agreement indicators, you could use a few SQL queries on the Job table to report how many:

• jobs have run

• jobs have been successful

• files have been backed up

• ...

However, these statistics are accurate only if your job retention is greater than your statistics period. Ie, if
jobs are purged from the catalog, you won’t be able to use them.

Now, you can use the update stats [days=num] console command to fill the JobHistory table with new
Job records. If you want to be sure to take in account only good jobs, ie if one of your important job has
failed but you have fixed the problem and restarted it on time, you probably want to delete the first bad job
record and keep only the successful one. For that simply let your staff do the job, and update JobHistory
table after two or three days depending on your organization using the [days=num] option.

These statistics records aren’t used for restoring, but mainly for capacity planning, billings, etc.

The Bweb interface provides a statistics module that can use this feature. You can also use tools like Talend
or extract information by yourself.

The Statistics Retention = <time> director directive defines the length of time that Bacula will keep
statistics job records in the Catalog database after the Job End time. (In JobHistory table) When this
time period expires, and if user runs prune stats command, Bacula will prune (remove) Job records that
are older than the specified period.

You can use the following Job resource in your nightly BackupCatalog job to maintain statistics.

289

290 Bacula Version 5.0.3

Job {

Name = BackupCatalog

...

RunScript {

Console = "update stats days=3"

Console = "prune stats yes"

RunsWhen = After

RunsOnClient = no

}

}

Chapter 36

ANSI and IBM Tape Labels

Bacula supports ANSI or IBM tape labels as long as you enable it. In fact, with the proper configuration,
you can force Bacula to require ANSI or IBM labels.

Bacula can create an ANSI or IBM label, but if Check Labels is enabled (see below), Bacula will look for an
existing label, and if it is found, it will keep the label. Consequently, you can label the tapes with programs
other than Bacula, and Bacula will recognize and support them.

Even though Bacula will recognize and write ANSI and IBM labels, it always writes its own tape labels as
well.

When using ANSI or IBM tape labeling, you must restrict your Volume names to a maximum of six char-
acters.

If you have labeled your Volumes outside of Bacula, then the ANSI/IBM label will be recognized by Bacula
only if you have created the HDR1 label with BACULA.DATA in the Filename field (starting with
character 5). If Bacula writes the labels, it will use this information to recognize the tape as a Bacula
tape. This allows ANSI/IBM labeled tapes to be used at sites with multiple machines and multiple backup
programs.

36.1 Director Pool Directive

Label Type = ANSI — IBM — Bacula This directive is implemented in the Director Pool resource
and in the SD Device resource. If it is specified in the SD Device resource, it will take precedence over
the value passed from the Director to the SD. The default is Label Type = Bacula.

36.2 Storage Daemon Device Directives

Label Type = ANSI — IBM — Bacula This directive is implemented in the Director Pool resource
and in the SD Device resource. If it is specified in the the SD Device resource, it will take precedence
over the value passed from the Director to the SD.

Check Labels = yes — no This directive is implemented in the the SD Device resource. If you intend
to read ANSI or IBM labels, this *must* be set. Even if the volume is not ANSI labeled, you can set
this to yes, and Bacula will check the label type. Without this directive set to yes, Bacula will assume
that labels are of Bacula type and will not check for ANSI or IBM labels. In other words, if there is a
possibility of Bacula encountering an ANSI/IBM label, you must set this to yes.

291

292 Bacula Version 5.0.3

Chapter 37

The Windows Version of Bacula

At the current time only the File daemon or Client program has been thouroughly tested on Windows and is
suitable for a production environment. As a consequence, when we speak of the Windows version of Bacula
below, we are referring to the File daemon (client) only.

As of Bacula version 1.39.20 or greater, the installer is capable of installing not just the Client program, but
also the Director and the Storage daemon and all the other programs that were previously available only on
Unix systems. These additional programs, notably the Director and Storage daemon, have been partially
tested, are reported to have some bugs, and still need to be documented. They are not yet supported, and we
cannot currently accept or fix bug reports on them. Consequently, please test them carefully before putting
them into a critical production environment.

The Windows version of the Bacula File daemon has been tested on Win98, WinMe, WinNT, WinXP,
Win2000, and Windows 2003 systems. We have coded to support Win95, but no longer have a system for
testing. The Windows version of Bacula is a native Win32 port, but there are very few source code changes
to the Unix code, which means that the Windows version is for the most part running code that has long
proved stable on Unix systems. When running, it is perfectly integrated with Windows and displays its icon
in the system icon tray, and provides a system tray menu to obtain additional information on how Bacula
is running (status and events dialog boxes). If so desired, it can also be stopped by using the system tray
menu, though this should normally never be necessary.

Once installed Bacula normally runs as a system service. This means that it is immediately started by the
operating system when the system is booted, and runs in the background even if there is no user logged into
the system.

37.1 Win32 Installation

Normally, you will install the Windows version of Bacula from the binaries. This install is standard Windows
.exe that runs an install wizard using the NSIS Free Software installer, so if you have already installed
Windows software, it should be very familiar to you.

If you have a previous version Bacula (1.39.20 or lower) installed, you should stop the service, uninstall it,
and remove the Bacula installation directory possibly saving your bacula-fd.conf, bconsole.conf, and bwx-
console.conf files for use with the new version you will install. The Uninstall program is normally found
in c:\bacula\Uninstall.exe. We also recommend that you completely remove the directory c:\bacula,
because the current installer uses a different directory structure (see below).

Providing you do not already have Bacula installed, the new installer (1.39.22 and later) installs the bina-
ries and dlls in c:\Program Files\Bacula\bin and the configuration files in c:\Documents and Settings\All
Users\Application Data\Bacula In addition, the Start>All Programs>Bacula menu item will be created
during the installation, and on that menu, you will find items for editing the configuration files, displaying
the document, and starting bwx-console or bconsole.

293

294 Bacula Version 5.0.3

Finally, proceed with the installation.

• You must be logged in as Administrator to the local machine to do a correct installation, if not, please
do so before continuing. Some users have attempted to install logged in as a domain administrator
account and experienced permissions problems attempting to run Bacula, so we don’t recommend that
option.

• Simply double click on the winbacula-1.xx.0.exe NSIS install icon. The actual name of the icon will
vary from one release version to another.

winbacula-1.xx.0.exe

• Once launched, the installer wizard will ask you if you want to install Bacula.

• Next you will be asked to select the installation type.

• If you proceed, you will be asked to select the components to be installed. You may install the Bacula
program (Bacula File Service) and or the documentation. Both will be installed in sub-directories of

Bacula Version 5.0.3 295

the install location that you choose later. The components dialog looks like the following:

• If you are installing for the first time, you will be asked to enter some very basic information about
your configuration. If you are not sure what to enter, or have previously saved configuration files, you
can put anything you want into the fields, then either replace the configuration files later with the ones
saved, or edit the file.

If you are upgrading an existing installation, the following will not be displayed.

• While the various files are being loaded, you will see the following dialog:

296 Bacula Version 5.0.3

• Finally, the finish dialog will appear:

That should complete the installation process. When the Bacula File Server is ready to serve files, an icon

representing a cassette (or tape) will appear in the system tray ; right click on it and a
menu will appear.

The Events item is currently unimplemented, by selecting the Status item, you can verify whether any
jobs are running or not.

When the Bacula File Server begins saving files, the color of the holes in the cassette icon will change from

Bacula Version 5.0.3 297

white to green , and if there is an error, the holes in the cassette icon will change to red .

If you are using remote desktop connections between your Windows boxes, be warned that that tray icon
does not always appear. It will always be visible when you log into the console, but the remote desktop may
not display it.

37.2 Post Win32 Installation

After installing Bacula and before running it, you should check the contents of the configuration files to
ensure that they correspond to your installation. You can get to them by using: the Start>All Programs-
>Bacula menu item.

Finally, but pulling up the Task Manager (ctl-alt-del), verify that Bacula is running as a process (not an
Application) with User Name SYSTEM. If this is not the case, you probably have not installed Bacula while
running as Administrator, and hence it will be unlikely that Bacula can access all the system files.

37.3 Uninstalling Bacula on Win32

Once Bacula has been installed, it can be uninstalled using the standard Windows Add/Remove Programs
dialog found on the Control panel.

37.4 Dealing with Win32 Problems

Sometimes Win32 machines the File daemon may have very slow backup transfer rates compared to other
machines. To you might try setting the Maximum Network Buffer Size to 32,768 in both the File daemon
and in the Storage daemon. The default size is larger, and apparently some Windows ethernet controllers
do not deal with a larger network buffer size.

Many Windows ethernet drivers have a tendency to either run slowly due to old broken firmware, or because
they are running in half-duplex mode. Please check with the ethernet card manufacturer for the latest
firmware and use whatever techniques are necessary to ensure that the card is running in duplex.

If you are not using the portable option, and you have VSS (Volume Shadow Copy) enabled in the Director,
and you experience problems with Bacula not being able to open files, it is most likely that you are running
an antivirus program that blocks Bacula from doing certain operations. In this case, disable the antivirus
program and try another backup. If it succeeds, either get a different (better) antivirus program or use
something like RunClientJobBefore/After to turn off the antivirus program while the backup is running.

If turning off anti-virus software does not resolve your VSS problems, you might have to turn on VSS
debugging. The following link describes how to do this: http://support.microsoft.com/kb/887013/en-us.

In Microsoft Windows Small Business Server 2003 the VSS Writer for Ex-
change is turned off by default. To turn it on, please see the following link:
http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q838183

The most likely source of problems is authentication when the Director attempts to connect to the File
daemon that you installed. This can occur if the names and the passwords defined in the File daemon’s
configuration file bacula-fd.conf file on the Windows machine do not match with the names and the
passwords in the Director’s configuration file bacula-dir.conf located on your Unix/Linux server.

More specifically, the password found in the Client resource in the Director’s configuration file must be the
same as the password in the Director resource of the File daemon’s configuration file. In addition, the
name of the Director resource in the File daemon’s configuration file must be the same as the name in the
Director resource of the Director’s configuration file.

http://support.microsoft.com/kb/887013/en-us
 http://support.microsoft.com/default.aspx?scid=kb;EN-US;Q838183

298 Bacula Version 5.0.3

It is a bit hard to explain in words, but if you understand that a Director normally has multiple Clients
and a Client (or File daemon) may permit access by multiple Directors, you can see that the names and the
passwords on both sides must match for proper authentication.

One user had serious problems with the configuration file until he realized that the Unix end of line con-
ventions were used and Bacula wanted them in Windows format. This has not been confirmed though, and
Bacula version 2.0.0 and above should now accept all end of line conventions (Win32, Unix, Mac).

Running Unix like programs on Windows machines is a bit frustrating because the Windows command line
shell (DOS Window) is rather primitive. As a consequence, it is not generally possible to see the debug
information and certain error messages that Bacula prints. With a bit of work, however, it is possible. When
everything else fails and you want to see what is going on, try the following:

Start a DOS shell Window.

c:\Program Files\bacula\bacula-fd -t >out

type out

The precise path to bacula-fd depends on where it is installed. The -t option will cause Bacula to read the
configuration file, print any error messages and then exit. the > redirects the output to the file named out,
which you can list with the type command.

If something is going wrong later, or you want to run Bacula with a debug option, you might try starting
it as:

c:\Program Files\bacula\bin\bacula-fd -d 100 >out

In this case, Bacula will run until you explicitly stop it, which will give you a chance to connect to it from
your Unix/Linux server. In later versions of Bacula (1.34 on, I think), when you start the File daemon in
debug mode it can write the output to a trace file bacula.trace in the current directory. To enable this,
before running a job, use the console, and enter:

trace on

then run the job, and once you have terminated the File daemon, you will find the debug output in the
bacula.trace file, which will probably be located in the same directory as bacula-fd.exe.

In addition, you should look in the System Applications log on the Control Panel to find any Windows errors
that Bacula got during the startup process.

Finally, due to the above problems, when you turn on debugging, and specify trace=1 on a setdebug command
in the Console, Bacula will write the debug information to the file bacula.trace in the directory from which
Bacula is executing.

If you are having problems with ClientRunBeforeJob scripts randomly dying, it is possible that you have
run into an Oracle bug. See bug number 622 in the bugs.bacula.org database. The following information
has been provided by a user on this issue:

The information in this document applies to:

Oracle HTTP Server - Version: 9.0.4

Microsoft Windows Server 2003

Symptoms

When starting an OC4J instance, the System Clock runs faster, about 7

seconds per minute.

Cause

+ This is caused by the Sun JVM bug 4500388, which states that "Calling

Thread.sleep() with a small argument affects the system clock". Although

this is reported as fixed in JDK 1.4.0_02, several reports contradict this

(see the bug in

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4500388).

Bacula Version 5.0.3 299

+ Also reported by Microsoft as "The system clock may run fast when you

use the ACPI power management timer as a high-resolution counter on Windows

2000-based computers" (See http://support.microsoft.com/?id=821893)

You may wish to start the daemon with debug mode on rather than doing it using bconsole. To do so, edit
the following registry key:

HKEY_LOCAL_MACHINE\HARDWARE\SYSTEM\CurrentControlSet\Services\Bacula-dir

using regedit, then add -dnn after the /service option, where nn represents the debug level you want.

37.5 Windows Compatibility Considerations

If you are not using the VSS (Volume Shadow Copy) option described in the next section of this chapter,
and if any applications are running during the backup and they have files opened exclusively, Bacula will
not be able to backup those files, so be sure you close your applications (or tell your users to close their
applications) before the backup. Fortunately, most Microsoft applications do not open files exclusively so
that they can be backed up. However, you will need to experiment. In any case, if Bacula cannot open
the file, it will print an error message, so you will always know which files were not backed up. For version
1.37.25 and greater, see the section below on Volume Shadow Copy Service that permits backing up any file.

During backup, Bacula doesn’t know about the system registry, so you will either need to write it out to an
ASCII file using regedit /e or use a program specifically designed to make a copy or backup the registry.

In Bacula version 1.31 and later, we use Windows backup API calls by default. Typical of Windows,
programming these special BackupRead and BackupWrite calls is a real nightmare of complications. The
end result gives some distinct advantages and some disadvantages.

First, the advantages are that on WinNT/2K/XP systems, the security and ownership information is now
backed up. In addition, with the exception of files in exclusive use by another program, Bacula can now
access all system files. This means that when you restore files, the security and ownership information will
be restored on WinNT/2K/XP along with the data.

The disadvantage of the Windows backup API calls is that it produces non-portable backups. That is files
and their data that are backed up on WinNT using the native API calls (BackupRead/BackupWrite) cannot
be restored on Win95/98/Me or Unix systems. In principle, a file backed up on WinNT can be restored
on WinXP, but this remains to be seen in practice (not yet tested). Bacula should be able to read non-
portable backups on any system and restore the data appropriately. However, on a system that does not
have the BackupRead/BackupWrite calls (older Windows versions and all Unix/Linux machines), though
the file data can be restored, the Windows security and access control data will not be restored. This means
that a standard set of access permissions will be set for such restored files.

As a default, Bacula backs up Windows systems using the Windows API calls. If you want to backup
data on a WinNT/2K/XP system and restore it on a Unix/Win95/98/Me system, we have provided a
special portable option that backs up the data in a portable fashion by using portable API calls. See the
portable option on the Include statement in a FileSet resource in the Director’s configuration chapter for the
details on setting this option. However, using the portable option means you may have permissions problems
accessing files, and none of the security and ownership information will be backed up or restored. The file
data can, however, be restored on any system.

You should always be able to restore any file backed up on Unix or Win95/98/Me to any other system.
On some systems, such as WinNT/2K/XP, you may have to reset the ownership of such restored files.
Any file backed up on WinNT/2K/XP should in principle be able to be restored to a similar system (i.e.
WinNT/2K/XP), however, I am unsure of the consequences if the owner information and accounts are not
identical on both systems. Bacula will not let you restore files backed up on WinNT/2K/XP to any other
system (i.e. Unix Win95/98/Me) if you have used the defaults.

300 Bacula Version 5.0.3

Finally, if you specify the portable=yes option on the files you back up. Bacula will be able to restore
them on any other system. However, any WinNT/2K/XP specific security and ownership information will
be lost.

The following matrix will give you an idea of what you can expect. Thanks to Marc Brueckner for doing the
tests:

Backup OS Restore OS Results
WinMe WinMe Works
WinMe WinNT Works (SYSTEM permissions)
WinMe WinXP Works (SYSTEM permissions)
WinMe Linux Works (SYSTEM permissions)

WinXP WinXP Works
WinXP WinNT Works (all files OK, but got ”The data is in-

valid” message)
WinXP WinMe Error: Win32 data stream not supported.
WinXP WinMe Works if Portable=yes specified during

backup.
WinXP Linux Error: Win32 data stream not supported.
WinXP Linux Works if Portable=yes specified during

backup.

WinNT WinNT Works
WinNT WinXP Works
WinNT WinMe Error: Win32 data stream not supported.
WinNT WinMe Works if Portable=yes specified during

backup.
WinNT Linux Error: Win32 data stream not supported.
WinNT Linux Works if Portable=yes specified during

backup.

Linux Linux Works
Linux WinNT Works (SYSTEM permissions)
Linux WinMe Works
Linux WinXP Works (SYSTEM permissions)

Note: with Bacula versions 1.39.x and later, non-portable Windows data can be restore to any machine.

37.6 Volume Shadow Copy Service

In version 1.37.30 and greater, you can turn on Microsoft’s Volume Shadow Copy Service (VSS).

Microsoft added VSS to Windows XP and Windows 2003. From the perspective of a backup-solution for
Windows, this is an extremely important step. VSS allows Bacula to backup open files and even to interact
with applications like RDBMS to produce consistent file copies. VSS aware applications are called VSS
Writers, they register with the OS so that when Bacula wants to do a Snapshot, the OS will notify the
register Writer programs, which may then create a consistent state in their application, which will be backed
up. Examples for these writers are ”MSDE” (Microsoft database engine), ”Event Log Writer”, ”Registry
Writer” plus 3rd party-writers. If you have a non-vss aware application (e.g. SQL Anywhere or probably
MySQL), a shadow copy is still generated and the open files can be backed up, but there is no guarantee
that the file is consistent.

Bacula produces a message from each of the registered writer programs when it is doing a VSS backup so
you know which ones are correctly backed up.

Bacula supports VSS on both Windows 2003 and Windows XP. Technically Bacula creates a shadow copy

Bacula Version 5.0.3 301

as soon as the backup process starts. It does then backup all files from the shadow copy and destroys the
shadow copy after the backup process. Please have in mind, that VSS creates a snapshot and thus backs up
the system at the state it had when starting the backup. It will disregard file changes which occur during
the backup process.

VSS can be turned on by placing an

Enable VSS = yes

in your FileSet resource.

The VSS aware File daemon has the letters VSS on the signon line that it produces when contacted by the
console. For example:

Tibs-fd Version: 1.37.32 (22 July 2005) VSS Windows XP MVS NT 5.1.2600

the VSS is shown in the line above. This only means that the File daemon is capable of doing VSS not that
VSS is turned on for a particular backup. There are two ways of telling if VSS is actually turned on during
a backup. The first is to look at the status output for a job, e.g.:

Running Jobs:

JobId 1 Job NightlySave.2005-07-23_13.25.45 is running.

VSS Backup Job started: 23-Jul-05 13:25

Files=70,113 Bytes=3,987,180,650 Bytes/sec=3,244,247

Files Examined=75,021

Processing file: c:/Documents and Settings/kern/My Documents/My Pictures/Misc1/Sans titre - 39.pdd

SDReadSeqNo=5 fd=352

Here, you see under Running Jobs that JobId 1 is ”VSS Backup Job started ...” This means that VSS is
enabled for that job. If VSS is not enabled, it will simply show ”Backup Job started ...” without the letters
VSS.

The second way to know that the job was backed up with VSS is to look at the Job Report, which will look
something like the following:

23-Jul 13:25 rufus-dir: Start Backup JobId 1, Job=NightlySave.2005-07-23_13.25.45

23-Jul 13:26 rufus-sd: Wrote label to prelabeled Volume "TestVolume001" on device "DDS-4" (/dev/nst0)

23-Jul 13:26 rufus-sd: Spooling data ...

23-Jul 13:26 Tibs: Generate VSS snapshots. Driver="VSS WinXP", Drive(s)="C"

23-Jul 13:26 Tibs: VSS Writer: "MSDEWriter", State: 1 (VSS_WS_STABLE)

23-Jul 13:26 Tibs: VSS Writer: "Microsoft Writer (Bootable State)", State: 1 (VSS_WS_STABLE)

23-Jul 13:26 Tibs: VSS Writer: "WMI Writer", State: 1 (VSS_WS_STABLE)

23-Jul 13:26 Tibs: VSS Writer: "Microsoft Writer (Service State)", State: 1 (VSS_WS_STABLE)

In the above Job Report listing, you see that the VSS snapshot was generated for drive C (if other drives
are backed up, they will be listed on the Drive(s)=”C” You also see the reports from each of the writer
program. Here they all report VSS WS STABLE, which means that you will get a consistent snapshot of
the data handled by that writer.

37.7 VSS Problems

Problems!VSS

If you are experiencing problems such as VSS hanging on MSDE, first try running vssadmin to check for
problems, then try running ntbackup which also uses VSS to see if it has similar problems. If so, you know
that the problem is in your Windows machine and not with Bacula.

The FD hang problems were reported with MSDEwriter when:

302 Bacula Version 5.0.3

• a local firewall locked local access to the MSDE TCP port (MSDEwriter seems to use TCP/IP and
not Named Pipes).

• msdtcs was installed to run under ”localsystem”: try running msdtcs under networking account (instead
of local system) (com+ seems to work better with this configuration).

37.8 Windows Firewalls

If you turn on the firewalling feature on Windows (default in WinXP SP2), you are likely to find that the
Bacula ports are blocked and you cannot communicate to the other daemons. This can be deactivated
through the Security Notification dialog, which is apparently somewhere in the Security Center. I
don’t have this on my computer, so I cannot give the exact details.

The command:

netsh firewall set opmode disable

is purported to disable the firewall, but this command is not accepted on my WinXP Home machine.

37.9 Windows Port Usage

If you want to see if the File daemon has properly opened the port and is listening, you can enter the
following command in a shell window:

netstat -an | findstr 910[123]

TopView is another program that has been recommend, but it is not a standard Win32 program, so you
must find and download it from the Internet.

37.10 Windows Disaster Recovery

We don’t currently have a good solution for disaster recovery on Windows as we do on Linux. The main piece
lacking is a Windows boot floppy or a Windows boot CD. Microsoft releases a Windows Pre-installation
Environment (WinPE) that could possibly work, but we have not investigated it. This means that until
someone figures out the correct procedure, you must restore the OS from the installation disks, then you
can load a Bacula client and restore files. Please don’t count on using bextract to extract files from your
backup tapes during a disaster recovery unless you have backed up those files using the portable option.
bextract does not run on Windows, and the normal way Bacula saves files using the Windows API prevents
the files from being restored on a Unix machine. Once you have an operational Windows OS loaded, you
can run the File daemon and restore your user files.

Please see Disaster Recovery of Win32 Systems for the latest suggestion, which looks very promising.

It looks like Bart PE Builder, which creates a Windows PE (Pre-installation Environment) Boot-CD, may
be just what is needed to build a complete disaster recovery system for Win32. This distribution can be
found at http://www.nu2.nu/pebuilder/.

37.11 Windows Restore Problems

Please see the Restore Chapter of this manual for problems that you might encounter doing a restore.

http://www.nu2.nu/pebuilder/

Bacula Version 5.0.3 303

sectionWindows Backup Problems If during a Backup, you get the message: ERR=Access is denied and
you are using the portable option, you should try both adding both the non-portable (backup API) and the
Volume Shadow Copy options to your Director’s conf file.

In the Options resource:

portable = no

In the FileSet resource:

enablevss = yes

In general, specifying these two options should allow you to backup any file on a Windows system. However,
in some cases, if users have allowed to have full control of their folders, even system programs such a Bacula
can be locked out. In this case, you must identify which folders or files are creating the problem and do the
following:

1. Grant ownership of the file/folder to the Administrators group, with the option to replace the owner
on all child objects.

2. Grant full control permissions to the Administrators group, and change the user’s group to only have
Modify permission to the file/folder and all child objects.

Thanks to Georger Araujo for the above information.

37.12 Windows Ownership and Permissions Problems

If you restore files backed up from WinNT/XP/2K to an alternate directory, Bacula may need to create
some higher level directories that were not saved (or restored). In this case, the File daemon will create
them under the SYSTEM account because that is the account that Bacula runs under as a service. As of
version 1.32f-3, Bacula creates these files with full access permission. However, there may be cases where
you have problems accessing those files even if you run as administrator. In principle, Microsoft supplies you
with the way to cease the ownership of those files and thus change the permissions. However, a much better
solution to working with and changing Win32 permissions is the program SetACL, which can be found at
http://setacl.sourceforge.net/.

If you have not installed Bacula while running as Administrator and if Bacula is not running as a Process
with the userid (User Name) SYSTEM, then it is very unlikely that it will have sufficient permission to
access all your files.

Some users have experienced problems restoring files that participate in the Active Directory. They also
report that changing the userid under which Bacula (bacula-fd.exe) runs, from SYSTEM to a Domain Admin
userid, resolves the problem.

37.13 Manually resetting the Permissions

The following solution was provided by Dan Langille <dan at langille in the dot org domain>. The steps
are performed using Windows 2000 Server but they should apply to most Win32 platforms. The procedure
outlines how to deal with a problem which arises when a restore creates a top-level new directory. In this
example, ”top-level” means something like c:\src, not c:\tmp\src where c:\tmp already exists. If a restore
job specifies / as the Where: value, this problem will arise.

The problem appears as a directory which cannot be browsed with Windows Explorer. The symptoms
include the following message when you try to click on that directory:

http://setacl.sourceforge.net/

304 Bacula Version 5.0.3

If you encounter this message, the following steps will change the permissions to allow full access.

1. right click on the top level directory (in this example, c:/src) and select Properties.

2. click on the Security tab.

3. If the following message appears, you can ignore it, and click on OK.

You should see something like this:

4. click on Advanced

5. click on the Owner tab

6. Change the owner to something other than the current owner (which is SYSTEM in this example as
shown below).

Bacula Version 5.0.3 305

7. ensure the ”Replace owner on subcontainers and objects” box is checked

8. click on OK

9. When the message ”You do not have permission to read the contents of directory c:\src\basis. Do you
wish to replace the directory permissions with permissions granting you Full Control?”, click on Yes.

10. Click on OK to close the Properties tab

With the above procedure, you should now have full control over your restored directory.

In addition to the above methods of changing permissions, there is a Microsoft program named cacls that
can perform similar functions.

37.14 Backing Up the WinNT/XP/2K System State

A suggestion by Damian Coutts using Microsoft’s NTBackup utility in conjunction with Bacula should
permit a full restore of any damaged system files on Win2K/XP. His suggestion is to do an NTBackup of
the critical system state prior to running a Bacula backup with the following command:

ntbackup backup systemstate /F c:\systemstate.bkf

The backup is the command, the systemstate says to backup only the system state and not all the user
files, and the /F c:\systemstate.bkf specifies where to write the state file. this file must then be saved
and restored by Bacula.

306 Bacula Version 5.0.3

To restore the system state, you first reload a base operating system if the OS is damaged, otherwise, this
is not necessary, then you would use Bacula to restore all the damaged or lost user’s files and to recover the
c:\systemstate.bkf file. Finally if there are any damaged or missing system files or registry problems, you
run NTBackup and catalogue the system statefile, and then select it for restore. The documentation says
you can’t run a command line restore of the systemstate.

To the best of my knowledge, this has not yet been tested. If you test it, please report your results to the
Bacula email list.

37.15 Considerations for Filename Specifications

Please see the Director’s Configuration chapter of this manual for important considerations on how to specify
Windows paths in Bacula FileSet Include and Exclude directives.

Bacula versions prior to 1.37.28 do not support Windows Unicode filenames. As of that version, both
bconsole and bwx-console support Windows Unicode filenames. There may still be some problems with
multiple byte characters (e.g. Chinese, ...) where it is a two byte character but the displayed character is
not two characters wide.

Path/filenames longer than 260 characters (up to 32,000) are supported beginning with Bacula version
1.39.20. Older Bacula versions support only 260 character path/filenames.

37.16 Win32 Specific File daemon Command Line

These options are not normally seen or used by the user, and are documented here only for information
purposes. At the current time, to change the default options, you must either manually run Bacula or you
must manually edit the system registry and modify the appropriate entries.

In order to avoid option clashes between the options necessary for Bacula to run on Windows and the
standard Bacula options, all Windows specific options are signaled with a forward slash character (/), while
as usual, the standard Bacula options are signaled with a minus (-), or a minus minus (--). All the standard
Bacula options can be used on the Windows version. In addition, the following Windows only options are
implemented:

/service Start Bacula as a service

/run Run the Bacula application

/install Install Bacula as a service in the system registry

/remove Uninstall Bacula from the system registry

/about Show the Bacula about dialogue box

/status Show the Bacula status dialogue box

/events Show the Bacula events dialogue box (not yet implemented)

/kill Stop any running Bacula

/help Show the Bacula help dialogue box

It is important to note that under normal circumstances the user should never need to use these options as
they are normally handled by the system automatically once Bacula is installed. However, you may note
these options in some of the .bat files that have been created for your use.

Bacula Version 5.0.3 307

37.17 Shutting down Windows Systems

Some users like to shutdown their Windows machines after a backup using a Client Run After Job directive.
If you want to do something similar, you might take the shutdown program from the apcupsd project or one
from the Sysinternals project.

http://www.apcupsd.com
http://technet.microsoft.com/en-us/sysinternals/bb897541.aspx

308 Bacula Version 5.0.3

Chapter 38

Disaster Recovery Using Bacula

38.1 General

When disaster strikes, you must have a plan, and you must have prepared in advance otherwise the work of
recovering your system and your files will be considerably greater. For example, if you have not previously
saved the partitioning information for your hard disk, how can you properly rebuild it if the disk must be
replaced?

Unfortunately, many of the steps one must take before and immediately after a disaster are very operating
system dependent. As a consequence, this chapter will discuss in detail disaster recovery (also called Bare
Metal Recovery) for Linux and Solaris. For Solaris, the procedures are still quite manual. For FreeBSD
the same procedures may be used but they are not yet developed. For Win32, a number of Bacula users
have reported success using BartPE.

38.2 Important Considerations

Here are a few important considerations concerning disaster recovery that you should take into account
before a disaster strikes.

• If the building which houses your computers burns down or is otherwise destroyed, do you have off-site
backup data?

• Disaster recovery is much easier if you have several machines. If you have a single machine, how will
you handle unforeseen events if your only machine is down?

• Do you want to protect your whole system and use Bacula to recover everything? or do you want to
try to restore your system from the original installation disks and apply any other updates and only
restore user files?

38.3 Steps to Take Before Disaster Strikes

• Create a rescue or CDROM for each of your Linux systems. Generally, they are offered by each
distribution, and there are many good rescue disks on the Web (Knoppix, sysrescuecd, PLD Linux
rescue CD, tomsrtbt, RIP ...

• Create a bacula-hostname directory on each machine and save it somewhere – possibly on a USB key.

• Ensure that you always have a valid bootstrap file for your backup and that it is saved to an alternate
machine. This will permit you to easily do a full restore of your system.

309

310 Bacula Version 5.0.3

• If possible copy your catalog nightly to an alternate machine. If you have a valid bootstrap file, this is
not necessary, but can be very useful if you do not want to reload everything. .

• Ensure that you always have a valid bootstrap file for your catalog backup that is saved to an alternate
machine. This will permit you to restore your catalog more easily if needed.

• Test using the Rescue CDROM before you are forced to use it in an emergency situation.

• Make a copy of your Bacula .conf files, particularly your bacula-dir.conf, and your bacula-sd.conf files,
because if your server goes down, these files will be needed to get it back up and running, and they
can be difficult to rebuild from memory.

38.4 Bare Metal Recovery on Linux with a Rescue CD

As an alternative to creating a Rescue CD, please see the section below entitled
Bare Metal Recovery using a LiveCD.

Bacula previously had a Rescue CD. Unfortunately, this CD did not work on every Linux Distro, and in
addition, Linux is evolving with different boot methods, more and more complex hardware configurations
(LVM, RAID, WiFi, USB, ...). As a consequence, the Bacula Rescue CD as it was originally envisioned no
longer exists.

However there are many other good rescue disks available. A so called ”Bare Metal” recovery is one where
you start with an empty hard disk and you restore your machine. There are also cases where you may lose
a file or a directory and want it restored. Please see the previous chapter for more details for those cases.

Bare Metal Recovery assumes that you have the following items for your system:

• A Rescue CDROM containing a copy of your OS.

• Perhaps a copy of your hard disk information, as well as a statically linked version of the Bacula File
daemon.

• A full Bacula backup of your system possibly including Incremental or Differential backups since the
last Full backup

• A second system running the Bacula Director, the Catalog, and the Storage daemon. (this is not an
absolute requirement, but how to get around it is not yet documented here)

38.5 Requirements

38.6 Restoring a Client System

Now, let’s assume that your hard disk has just died and that you have replaced it with an new identical
drive. In addition, we assume that you have:

1. A recent Bacula backup (Full plus Incrementals)

2. A Rescue CDROM.

3. Your Bacula Director, Catalog, and Storage daemon running on another machine on your local network.

This is a relatively simple case, and later in this chapter, as time permits, we will discuss how you might
recover from a situation where the machine that crashes is your main Bacula server (i.e. has the Director,
the Catalog, and the Storage daemon).

You will take the following steps to get your system back up and running:

Bacula Version 5.0.3 311

1. Boot with your Rescue CDROM.

2. Start the Network (local network)

3. Re-partition your hard disk(s) as it was before

4. Re-format your partitions

5. Restore the Bacula File daemon (static version)

6. Perform a Bacula restore of all your files

7. Re-install your boot loader

8. Reboot

Now for the details ...

38.7 Boot with your Rescue CDROM

Each rescue disk boots somewhat differently. Please see the instructions that go with your CDROM.

Start the Network: You can test it by pinging another machine, or pinging your broken machine machine
from another machine. Do not proceed until your network is up.

Partition Your Hard Disk(s):

Format Your Hard Disk(s):

Mount the Newly Formatted Disks:

Somehow get the static File daemon loaded on your system Put the static file daemon and its
conf file in /tmp.

Restore and Start the File Daemon:

chroot /mnt/disk /tmp/bacula-fd -c /tmp/bacula-fd.conf

The above command starts the Bacula File daemon with the proper root disk location (i.e. /mnt/disk/tmp.
If Bacula does not start, correct the problem and start it. You can check if it is running by entering:

ps fax

You can kill Bacula by entering:

kill -TERM <pid>

where pid is the first number printed in front of the first occurrence of bacula-fd in the ps fax command.

Now, you should be able to use another computer with Bacula installed to check the status by entering:

312 Bacula Version 5.0.3

status client=xxxx

into the Console program, where xxxx is the name of the client you are restoring.

One common problem is that your bacula-dir.conf may contain machine addresses that are not properly
resolved on the stripped down system to be restored because it is not running DNS. This is particularly true
for the address in the Storage resource of the Director, which may be very well resolved on the Director’s
machine, but not on the machine being restored and running the File daemon. In that case, be prepared to
edit bacula-dir.conf to replace the name of the Storage daemon’s domain name with its IP address.

Restore Your Files: On the computer that is running the Director, you now run a restore command
and select the files to be restored (normally everything), but before starting the restore, there is one final
change you must make using the mod option. You must change the Where directory to be the root by
using the mod option just before running the job and selecting Where. Set it to:

/

then run the restore.

You might be tempted to avoid using chroot and running Bacula directly and then using a Where to
specify a destination of /mnt/disk. This is possible, however, the current version of Bacula always restores
files to the new location, and thus any soft links that have been specified with absolute paths will end up
with /mnt/disk prefixed to them. In general this is not fatal to getting your system running, but be aware
that you will have to fix these links if you do not use chroot.

Final Step:

/sbin/grub-install --root-directory=/mnt/disk /dev/hda

Note, in this case, you omit the chroot command, and you must replace /dev/hda with your boot device. If
you don’t know what your boot device is, run the ./run grub script once and it will tell you.

Finally, I’ve even run into a case where grub-install was unable to rewrite the boot block. In my case, it
produced the following error message:

/dev/hdx does not have any corresponding BIOS drive.

The solution is to insure that all your disks are properly mounted on /mnt/disk, then do the following:

chroot /mnt/disk

mount /dev/pts

Then edit the file /boot/grub/grub.conf and uncomment the line that reads:

#boot=/dev/hda

So that it reads:

boot=/dev/hda

Note, the /dev/hda may be /dev/sda or possibly some other drive depending on your configuration, but in
any case, it is the same as the one that you previously tried with grub-install.

Then, enter the following commands:

Bacula Version 5.0.3 313

grub --batch --device-map=/boot/grub/device.map \

--config-file=/boot/grub/grub.conf --no-floppy

root (hd0,0)

setup (hd0)

quit

If the grub call worked, you will get a prompt of grub> before the root, setup, and quit commands,
and after entering the setup command, it should indicate that it successfully wrote the MBR (master boot
record).

Reboot: First unmount all your hard disks, otherwise they will not be cleanly shutdown, then reboot
your machine by entering exit until you get to the main prompt then enter Ctrl-d. Once back to the main
CDROM prompt, you will need to turn the power off, then back on to your machine to get it to reboot.

If everything went well, you should now be back up and running. If not, re-insert the emergency boot
CDROM, boot, and figure out what is wrong.

38.8 Restoring a Server

Above, we considered how to recover a client machine where a valid Bacula server was running on another
machine. However, what happens if your server goes down and you no longer have a running Director,
Catalog, or Storage daemon? There are several solutions:

1. Bring up static versions of your Director, Catalog, and Storage daemon on the damaged machine.

2. Move your server to another machine.

3. Use a Hot Spare Server on another Machine.

The first option, is very difficult because it requires you to have created a static version of the Director and
the Storage daemon as well as the Catalog. If the Catalog uses MySQL or PostgreSQL, this may or may
not be possible. In addition, to loading all these programs on a bare system (quite possible), you will need
to make sure you have a valid driver for your tape drive.

The second suggestion is probably a much simpler solution, and one I have done myself. To do so, you might
want to consider the following steps:

• If you are using MySQL or PostgreSQL, configure, build and install it from source (or use rpms) on
your new system.

• Load the Bacula source code onto your new system, configure, install it, and create the Bacula database.

• Ideally, you will have a copy of all the Bacula conf files that were being used on your server. If not,
you will at a minimum need create a bacula-dir.conf that has the same Client resource that was used
to backup your system.

• If you have a valid saved Bootstrap file as created for your damaged machine with WriteBootstrap,
use it to restore the files to the damaged machine, where you have loaded a static Bacula File daemon
using the Rescue disk). This is done by using the restore command and at the yes/mod/no prompt,
selecting mod then specifying the path to the bootstrap file.

• If you have the Bootstrap file, you should now be back up and running, if you do not have a Bootstrap
file, continue with the suggestions below.

• Using bscan scan the last set of backup tapes into your MySQL, PostgreSQL or SQLite database.

• Start Bacula, and using the Console restore command, restore the last valid copy of the Bacula
database and the Bacula configuration files.

314 Bacula Version 5.0.3

• Move the database to the correct location.

• Start the database, and restart Bacula. Then use the Console restore command, restore all the files
on the damaged machine, where you have loaded a Bacula File daemon using the Rescue disk.

For additional details of restoring your database, please see the Restoring When Things Go Wrong section
of the Console Restore Command chapter of this manual.

38.9 Linux Problems or Bugs

Since every flavor and every release of Linux is different, there are likely to be some small difficulties with
the scripts, so please be prepared to edit them in a minimal environment. A rudimentary knowledge of vi
is very useful. Also, these scripts do not do everything. You will need to reformat Windows partitions by
hand, for example.

Getting the boot loader back can be a problem if you are using grub because it is so complicated. If all else
fails, reboot your system from your floppy but using the restored disk image, then proceed to a reinstallation
of grub (looking at the run-grub script can help). By contrast, lilo is a piece of cake.

38.10 Bare Metal Recovery using a LiveCD

As an alternative to the old now defunct Bacula Rescue CDROM, you can use any system rescue or LiveCD
to recover your system. The big problem with most rescue or LiveCDs is that they are not designed to
capture the current state of your system, so when you boot them on a damaged system, you might be
somewhat lost – e.g. how many of you remember your exact hard disk partitioning.

This lack can be easily corrected by running the part of the Bacula Rescue code that creates a directory
containing a static-bacula-fd, a snapshot of your current system disk configuration, and scripts that help
restoring it.

Before a disaster strikes:

1. Run only the make bacula part of the Bacula Rescue procedure to create the static Bacula File
daemon, and system disk snapshot.

2. Save the directory generated (more details below) preferrably on a CDROM or alternatively to some
other system.

3. Possibly run make bacula every night as part of your backup process to ensure that you have a
current snapshot of your system.

Then when disaster strikes, do the following:

1. Boot with your system rescue disk or LiveCD (e.g. Knoppix).

2. Start the Network (local network).

3. Copy the Bacula recovery directory to the damaged system using ftp, scp, wget or if your boot disk
permits it reading it directly from a CDROM.

4. Continue as documented above.

5. Re-partition your hard disk(s) as it was before, if necessary.

6. Re-format your partitions, if necessary.

7. Restore the Bacula File daemon (static version).

Bacula Version 5.0.3 315

8. Perform a Bacula restore of all your files.

9. Re-install your boot loader.

10. Reboot.

In order to create the Bacula recovery directory, you need a copy of the Bacula Rescue code as described
above, and you must first configure that directory.

Once the configuration is done, you can do the following to create the Bacula recovery directory:

cd <bacula-rescue-source>/linux/cdrom

su (become root)

make bacula

The directory you want to save will be created in the current directory with the name bacula. You need
only save that directory either as a directory or possibly as a compressed tar file. If you run this procedure
on multiple machines, you will probably want to rename this directory to something like bacula-hostname.

38.11 FreeBSD Bare Metal Recovery

The same basic techniques described above also apply to FreeBSD. Although we don’t yet have a fully
automated procedure, Alex Torres Molina has provided us with the following instructions with a few additions
from Jesse Guardiani and Dan Langille:

1. Boot with the FreeBSD installation disk

2. Go to Custom, Partition and create your slices and go to Label and create the partitions that you
want. Apply changes.

3. Go to Fixit to start an emergency console.

4. Create devs ad0 if they don’t exist under /mnt2/dev (in my situation) with MAKEDEV. The
device or devices you create depend on what hard drives you have. ad0 is your first ATA drive. da0
would by your first SCSI drive. Under OS version 5 and greater, your device files are most likely
automatically created for you.

5. mkdir /mnt/disk this is the root of the new disk

6. mount /mnt2/dev/ad0s1a /mnt/disk mount /mnt2/dev/ad0s1c /mnt/disk/var mount
/mnt2/dev/ad0s1d /mnt/disk/usr The same hard drive issues as above apply here too.
Note, under OS version 5 or higher, your disk devices may be in /dev not /mnt2/dev.

7. Network configuration (ifconfig xl0 ip/mask + route add default ip-gateway)

8. mkdir /mnt/disk/tmp

9. cd /mnt/disk/tmp

10. Copy bacula-fd and bacula-fd.conf to this path

11. If you need to, use sftp to copy files, after which you must do this: ln -s /mnt2/usr/bin /usr/bin

12. chmod u+x bacula-fd

13. Modify bacula-fd.conf to fit this machine

14. Copy /bin/sh to /mnt/disk, necessary for chroot

15. Don’t forget to put your bacula-dir’s IP address and domain name in /mnt/disk/etc/hosts if it’s not
on a public net. Otherwise the FD on the machine you are restoring to won’t be able to contact the
SD and DIR on the remote machine.

316 Bacula Version 5.0.3

16. mkdir -p /mnt/disk/var/db/bacula

17. chroot /mnt/disk /tmp/bacula-fd -c /tmp/bacula-fd.conf to start bacula-fd

18. Now you can go to bacula-dir and restore the job with the entire contents of the broken server.

19. You must create /proc

38.12 Solaris Bare Metal Recovery

The same basic techniques described above apply to Solaris:

• the same restrictions as those given for Linux apply

• you will need to create a Rescue disk

However, during the recovery phase, the boot and disk preparation procedures are different:

• there is no need to create an emergency boot disk since it is an integrated part of the Solaris boot.

• you must partition and format your hard disk by hand following manual procedures as described in
W. Curtis Preston’s book ”Unix Backup & Recovery”

Once the disk is partitioned, formatted and mounted, you can continue with bringing up the network and
reloading Bacula.

38.13 Preparing Solaris Before a Disaster

As mentioned above, before a disaster strikes, you should prepare the information needed in the case of
problems. To do so, in the rescue/solaris subdirectory enter:

su

./getdiskinfo

./make_rescue_disk

The getdiskinfo script will, as in the case of Linux described above, create a subdirectory diskinfo con-
taining the output from several system utilities. In addition, it will contain the output from the SysAudit
program as described in Curtis Preston’s book. This file diskinfo/sysaudit.bsi will contain the disk
partitioning information that will allow you to manually follow the procedures in the ”Unix Backup & Re-
covery” book to repartition and format your hard disk. In addition, the getdiskinfo script will create a
start network script.

Once you have your disks repartitioned and formatted, do the following:

• Start Your Network with the start network script

• Restore the Bacula File daemon as documented above

• Perform a Bacula restore of all your files using the same commands as described above for Linux

• Re-install your boot loader using the instructions outlined in the ”Unix Backup & Recovery” book
using installboot

Bacula Version 5.0.3 317

38.14 Bugs and Other Considerations

Directory Modification and Access Times are Modified on pre-1.30 Baculas : When a pre-1.30
version of Bacula restores a directory, it first must create the directory, then it populates the directory with
its files and subdirectories. The act of creating the files and subdirectories updates both the modification
and access times associated with the directory itself. As a consequence, all modification and access times of
all directories will be updated to the time of the restore.

This has been corrected in Bacula version 1.30 and later. The directory modification and access times are
reset to the value saved in the backup after all the files and subdirectories have been restored. This has been
tested and verified on normal restore operations, but not verified during a bare metal recovery.

Strange Bootstrap Files: If any of you look closely at the bootstrap file that is produced and used for
the restore (I sure do), you will probably notice that the FileIndex item does not include all the files saved
to the tape. This is because in some instances there are duplicates (especially in the case of an Incremental
save), and in such circumstances, Bacula restores only the last of multiple copies of a file or directory.

38.15 Disaster Recovery of Win32 Systems

Due to open system files, and registry problems, Bacula cannot save and restore a complete Win2K/XP/NT
environment.

A suggestion by Damian Coutts using Microsoft’s NTBackup utility in conjunction with Bacula should
permit a Full bare metal restore of Win2K/XP (and possibly NT systems). His suggestion is to do an
NTBackup of the critical system state prior to running a Bacula backup with the following command:

ntbackup backup systemstate /F c:\systemstate.bkf

The backup is the command, the systemstate says to backup only the system state and not all the user
files, and the /F c:\systemstate.bkf specifies where to write the state file. this file must then be saved and
restored by Bacula. This command can be put in a Client Run Before Job directive so that it is automatically
run during each backup, and thus saved to a Bacula Volume.

To restore the system state, you first reload a base operating system, then you would use Bacula to restore
all the users files and to recover the c:\systemstate.bkf file, and finally, run NTBackup and catalogue
the system statefile, and then select it for restore. The documentation says you can’t run a command line
restore of the systemstate.

This procedure has been confirmed to work by Ludovic Strappazon – many thanks!

A new tool is provided in the form of a bacula plugin for the BartPE rescue CD. BartPE is
a self-contained WindowsXP boot CD which you can make using the PeBuilder tools available at
http://www.nu2.nu/pebuilder/ and a valid Windows XP SP1 CDROM. The plugin is provided as a zip
archive. Unzip the file and copy the bacula directory into the plugin directory of your BartPE installation.
Edit the configuration files to suit your installation and build your CD according to the instructions at Bart’s
site. This will permit you to boot from the cd, configure and start networking, start the bacula file client
and access your director with the console program. The programs menu on the booted CD contains entries
to install the file client service, start the file client service, and start the WX-Console. You can also open a
command line window and CD Programs\Bacula and run the command line console bconsole.

38.16 Ownership and Permissions on Win32 Systems

Bacula versions after 1.31 should properly restore ownership and permissions on all WinNT/XP/2K systems.
If you do experience problems, generally in restores to alternate directories because higher level directories

http://www.nu2.nu/pebuilder/

318 Bacula Version 5.0.3

were not backed up by Bacula, you can correct any problems with the SetACL available under the GPL
license at: http://sourceforge.net/projects/setacl/.

38.17 Alternate Disaster Recovery Suggestion for Win32 Systems

Ludovic Strappazon has suggested an interesting way to backup and restore complete Win32 partitions.
Simply boot your Win32 system with a Linux Rescue disk as described above for Linux, install a statically
linked Bacula, and backup any of the raw partitions you want. Then to restore the system, you simply
restore the raw partition or partitions. Here is the email that Ludovic recently sent on that subject:

I’ve just finished testing my brand new cd LFS/Bacula

with a raw Bacula backup and restore of my portable.

I can’t resist sending you the results: look at the rates !!!

hunt-dir: Start Backup JobId 100, Job=HuntBackup.2003-04-17_12.58.26

hunt-dir: Bacula 1.30 (14Apr03): 17-Apr-2003 13:14

JobId: 100

Job: HuntBackup.2003-04-17_12.58.26

FileSet: RawPartition

Backup Level: Full

Client: sauvegarde-fd

Start time: 17-Apr-2003 12:58

End time: 17-Apr-2003 13:14

Files Written: 1

Bytes Written: 10,058,586,272

Rate: 10734.9 KB/s

Software Compression: None

Volume names(s): 000103

Volume Session Id: 2

Volume Session Time: 1050576790

Last Volume Bytes: 10,080,883,520

FD termination status: OK

SD termination status: OK

Termination: Backup OK

hunt-dir: Begin pruning Jobs.

hunt-dir: No Jobs found to prune.

hunt-dir: Begin pruning Files.

hunt-dir: No Files found to prune.

hunt-dir: End auto prune.

hunt-dir: Start Restore Job RestoreFilesHunt.2003-04-17_13.21.44

hunt-sd: Forward spacing to file 1.

hunt-dir: Bacula 1.30 (14Apr03): 17-Apr-2003 13:54

JobId: 101

Job: RestoreFilesHunt.2003-04-17_13.21.44

Client: sauvegarde-fd

Start time: 17-Apr-2003 13:21

End time: 17-Apr-2003 13:54

Files Restored: 1

Bytes Restored: 10,056,130,560

Rate: 5073.7 KB/s

FD termination status: OK

Termination: Restore OK

hunt-dir: Begin pruning Jobs.

hunt-dir: No Jobs found to prune.

hunt-dir: Begin pruning Files.

hunt-dir: No Files found to prune.

hunt-dir: End auto prune.

38.18 Restoring to a Running System

If for some reason you want to do a Full restore to a system that has a working kernel (not recommended),
you will need to take care not to overwrite the following files:

/etc/grub.conf

/etc/X11/Conf

http://sourceforge.net/projects/setacl/

Bacula Version 5.0.3 319

/etc/fstab

/etc/mtab

/lib/modules

/usr/modules

/usr/X11R6

/etc/modules.conf

38.19 Additional Resources

Many thanks to Charles Curley who wrote Linux Complete Backup and Recovery HOWTO for the
The Linux Documentation Project. This is an excellent document on how to do Bare Metal Recovery on
Linux systems, and it was this document that made me realize that Bacula could do the same thing.

You can find quite a few additional resources, both commercial and free at Storage Mountain, formerly
known as Backup Central.

And finally, the O’Reilly book, ”Unix Backup & Recovery” by W. Curtis Preston covers virtually every
backup and recovery topic including bare metal recovery for a large range of Unix systems.

http://www.tldp.org/HOWTO/Linux-Complete-Backup-and-Recovery-HOWTO/index.html
http://www.tldp.org/
http://www.backupcentral.com

320 Bacula Version 5.0.3

Chapter 39

Bacula TLS – Communications
Encryption

Bacula TLS (Transport Layer Security) is built-in network encryption code to provide secure network trans-
port similar to that offered by stunnel or ssh. The data written to Volumes by the Storage daemon is not
encrypted by this code. For data encryption, please see the Data Encryption Chapter of this manual.

The Bacula encryption implementations were written by Landon Fuller.

Supported features of this code include:

• Client/Server TLS Requirement Negotiation

• TLSv1 Connections with Server and Client Certificate Validation

• Forward Secrecy Support via Diffie-Hellman Ephemeral Keying

This document will refer to both ”server” and ”client” contexts. These terms refer to the accepting and
initiating peer, respectively.

Diffie-Hellman anonymous ciphers are not supported by this code. The use of DH anonymous ciphers
increases the code complexity and places explicit trust upon the two-way CRAM-MD5 implementation.
CRAM-MD5 is subject to known plaintext attacks, and it should be considered considerably less secure than
PKI certificate-based authentication.

Appropriate autoconf macros have been added to detect and use OpenSSL if enabled on the ./configure
line with --with-openssl

39.1 TLS Configuration Directives

Additional configuration directives have been added to all the daemons (Director, File daemon, and Storage
daemon) as well as the various different Console programs. These new directives are defined as follows:

TLS Enable = <yes—no> Enable TLS support. If TLS is not enabled, none of the other TLS directives
have any effect. In other words, even if you set TLS Require = yes you need to have TLS enabled
or TLS will not be used.

TLS Require = <yes—no> Require TLS connections. This directive is ignored unless TLS Enable is
set to yes. If TLS is not required, and TLS is enabled, then Bacula will connect with other daemons
either with or without TLS depending on what the other daemon requests. If TLS is enabled and TLS
is required, then Bacula will refuse any connection that does not use TLS.

321

322 Bacula Version 5.0.3

TLS Certificate = <Filename> The full path and filename of a PEM encoded TLS certificate. It can
be used as either a client or server certificate. PEM stands for Privacy Enhanced Mail, but in this
context refers to how the certificates are encoded. It is used because PEM files are base64 encoded
and hence ASCII text based rather than binary. They may also contain encrypted information.

TLS Key = <Filename> The full path and filename of a PEM encoded TLS private key. It must corre-
spond to the TLS certificate.

TLS Verify Peer = <yes—no> Verify peer certificate. Instructs server to request and verify the client’s
x509 certificate. Any client certificate signed by a known-CA will be accepted unless the TLS Allowed
CN configuration directive is used, in which case the client certificate must correspond to the Allowed
Common Name specified. This directive is valid only for a server and not in a client context.

TLS Allowed CN = <string list> Common name attribute of allowed peer certificates. If this directive
is specified, all server certificates will be verified against this list. This can be used to ensure that only
the CA-approved Director may connect. This directive may be specified more than once.

TLS CA Certificate File = <Filename> The full path and filename specifying a PEM encoded TLS
CA certificate(s). Multiple certificates are permitted in the file. One of TLS CA Certificate File or
TLS CA Certificate Dir are required in a server context if TLS Verify Peer (see above) is also specified,
and are always required in a client context.

TLS CA Certificate Dir = <Directory> Full path to TLS CA certificate directory. In the current
implementation, certificates must be stored PEM encoded with OpenSSL-compatible hashes, which
is the subject name’s hash and an extension of bf .0. One of TLS CA Certificate File or TLS CA
Certificate Dir are required in a server context if TLS Verify Peer is also specified, and are always
required in a client context.

TLS DH File = <Directory> Path to PEM encoded Diffie-Hellman parameter file. If this directive is
specified, DH key exchange will be used for the ephemeral keying, allowing for forward secrecy of
communications. DH key exchange adds an additional level of security because the key used for
encryption/decryption by the server and the client is computed on each end and thus is never passed
over the network if Diffie-Hellman key exchange is used. Even if DH key exchange is not used, the
encryption/decryption key is always passed encrypted. This directive is only valid within a server
context.

To generate the parameter file, you may use openssl:

openssl dhparam -out dh1024.pem -5 1024

39.2 Creating a Self-signed Certificate

You may create a self-signed certificate for use with the Bacula TLS that will permit you to make it function,
but will not allow certificate validation. The .pem file containing both the certificate and the key valid for
ten years can be made with the following:

openssl req -new -x509 -nodes -out bacula.pem -keyout bacula.pem -days 3650

The above script will ask you a number of questions. You may simply answer each of them by entering a
return, or if you wish you may enter your own data.

Note, however, that self-signed certificates will only work for the outgoing end of connections. For example,
in the case of the Director making a connection to a File Daemon, the File Daemon may be configured to
allow self-signed certificates, but the certificate used by the Director must be signed by a certificate that is
explicitly trusted on the File Daemon end.

This is necessary to prevent “man in the middle” attacks from tools such as ettercap. Essentially, if the
Director does not verify that it is talking to a trusted remote endpoint, it can be tricked into talking to a
malicious 3rd party who is relaying and capturing all traffic by presenting its own certificates to the Director

http://ettercap.sourceforge.net/

Bacula Version 5.0.3 323

and File Daemons. The only way to prevent this is by using trusted certificates, so that the man in the
middle is incapable of spoofing the connection using his own.

To get a trusted certificate (CA or Certificate Authority signed certificate), you will either need
to purchase certificates signed by a commercial CA or find a friend that has setup his own
CA or become a CA yourself, and thus you can sign all your own certificates. The book
OpenSSL by John Viega, Matt Mesier & Pravir Chandra from O’Reilly explains how to do it, or
you can read the documentation provided in the Open-source PKI Book project at Source Forge:
http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm. Note, this link may
change.

The program TinyCA has a very nice Graphical User Interface that allows you to easily setup and maintain
your own CA. TinyCA can be found at http://tinyca.sm-zone.net/.

39.3 Getting a CA Signed Certificate

The process of getting a certificate that is signed by a CA is quite a bit more complicated. You
can purchase one from quite a number of PKI vendors, but that is not at all necessary for use
with Bacula. To get a CA signed certificate, you will either need to find a friend that has setup
his own CA or to become a CA yourself, and thus you can sign all your own certificates. The
book OpenSSL by John Viega, Matt Mesier & Pravir Chandra from O’Reilly explains how to do it,
or you can read the documentation provided in the Open-source PKI Book project at Source Forge:
http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm. Note, this link may
change.

39.4 Example TLS Configuration Files

Landon has supplied us with the TLS portions of his configuration files, which should help you setting up
your own. Note, this example shows the directives necessary for a Director to Storage daemon session. The
technique is the same between the Director and the Client and for bconsole to the Director.

bacula-dir.conf

Director { # define myself

Name = backup1-dir

...

TLS Enable = yes

TLS Require = yes

TLS Verify Peer = yes

TLS Allowed CN = "bacula@backup1.example.com"

TLS Allowed CN = "administrator@example.com"

TLS CA Certificate File = /usr/local/etc/ssl/ca.pem

This is a server certificate, used for incoming

console connections.

TLS Certificate = /usr/local/etc/ssl/backup1/cert.pem

TLS Key = /usr/local/etc/ssl/backup1/key.pem

}

Storage {

Name = File

Address = backup1.example.com

...

TLS Require = yes

TLS CA Certificate File = /usr/local/etc/ssl/ca.pem

This is a client certificate, used by the director to

connect to the storage daemon

TLS Certificate = /usr/local/etc/ssl/bacula@backup1/cert.pem

TLS Key = /usr/local/etc/ssl/bacula@backup1/key.pem

}

Client {

Name = backup1-fd

http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm
http://tinyca.sm-zone.net/
http://ospkibook.sourceforge.net/docs/OSPKI-2.4.7/OSPKI-html/ospki-book.htm

324 Bacula Version 5.0.3

Address = server1.example.com

...

TLS Enable = yes

TLS Require = yes

TLS CA Certificate File = /usr/local/etc/ssl/ca.pem

}

bacula-fd.conf

Director {

Name = backup1-dir

...

TLS Enable = yes

TLS Require = yes

TLS Verify Peer = yes

Allow only the Director to connect

TLS Allowed CN = "bacula@backup1.example.com"

TLS CA Certificate File = /usr/local/etc/ssl/ca.pem

This is a server certificate. It is used by connecting

directors to verify the authenticity of this file daemon

TLS Certificate = /usr/local/etc/ssl/server1/cert.pem

TLS Key = /usr/local/etc/ssl/server1/key.pem

}

FileDaemon {

Name = backup1-fd

...

you need these TLS entries so the SD and FD can

communicate

TLS Enable = yes

TLS Require = yes

TLS CA Certificate File = /usr/local/etc/ssl/ca.pem

TLS Certificate = /usr/local/etc/ssl/server1/cert.pem

TLS Key = /usr/local/etc/ssl/server1/key.pem

}

bacula-sd.conf

Storage { # definition of myself

Name = backup1-sd

...

These TLS configuration options are used for incoming

file daemon connections. Director TLS settings are handled

below.

TLS Enable = yes

TLS Require = yes

Peer certificate is not required/requested -- peer validity

is verified by the storage connection cookie provided to the

File Daemon by the director.

TLS Verify Peer = no

TLS CA Certificate File = /usr/local/etc/ssl/ca.pem

This is a server certificate. It is used by connecting

file daemons to verify the authenticity of this storage daemon

TLS Certificate = /usr/local/etc/ssl/backup1/cert.pem

TLS Key = /usr/local/etc/ssl/backup1/key.pem

}

#

List Directors who are permitted to contact Storage daemon

#

Director {

Name = backup1-dir

...

TLS Enable = yes

TLS Require = yes

Require the connecting director to provide a certificate

with the matching CN.

TLS Verify Peer = yes

TLS Allowed CN = "bacula@backup1.example.com"

TLS CA Certificate File = /usr/local/etc/ssl/ca.pem

Bacula Version 5.0.3 325

This is a server certificate. It is used by the connecting

director to verify the authenticity of this storage daemon

TLS Certificate = /usr/local/etc/ssl/backup1/cert.pem

TLS Key = /usr/local/etc/ssl/backup1/key.pem

}

326 Bacula Version 5.0.3

Chapter 40

Data Encryption

Bacula permits file data encryption and signing within the File Daemon (or Client) prior to sending data to
the Storage Daemon. Upon restoration, file signatures are validated and any mismatches are reported. At
no time does the Director or the Storage Daemon have access to unencrypted file contents.

It is very important to specify what this implementation does NOT do:

• There is one important restore problem to be aware of, namely, it’s possible for the director to restore
new keys or a Bacula configuration file to the client, and thus force later backups to be made with a
compromised key and/or with no encryption at all. You can avoid this by not changing the location
of the keys in your Bacula File daemon configuration file, and not changing your File daemon keys. If
you do change either one, you must ensure that no restore is done that restores the old configuration
or the old keys. In general, the worst effect of this will be that you can no longer connect the File
daemon.

• The implementation does not encrypt file metadata such as file path names, permissions, and ownership.
Extended attributes are also currently not encrypted. However, Mac OS X resource forks are encrypted.

Encryption and signing are implemented using RSA private keys coupled with self-signed x509 public cer-
tificates. This is also sometimes known as PKI or Public Key Infrastructure.

Each File Daemon should be given its own unique private/public key pair. In addition to this key pair, any
number of ”Master Keys” may be specified – these are key pairs that may be used to decrypt any backups
should the File Daemon key be lost. Only the Master Key’s public certificate should be made available to
the File Daemon. Under no circumstances should the Master Private Key be shared or stored on the Client
machine.

The Master Keys should be backed up to a secure location, such as a CD placed in a in a fire-proof safe or
bank safety deposit box. The Master Keys should never be kept on the same machine as the Storage Daemon
or Director if you are worried about an unauthorized party compromising either machine and accessing your
encrypted backups.

While less critical than the Master Keys, File Daemon Keys are also a prime candidate for off-site backups;
burn the key pair to a CD and send the CD home with the owner of the machine.

NOTE!!! If you lose your encryption keys, backups will be unrecoverable. ALWAYS store a copy of your
master keys in a secure, off-site location.

The basic algorithm used for each backup session (Job) is:

1. The File daemon generates a session key.

2. The FD encrypts that session key via PKE for all recipients (the file daemon, any master keys).

3. The FD uses that session key to perform symmetric encryption on the data.

327

328 Bacula Version 5.0.3

40.1 Building Bacula with Encryption Support

The configuration option for enabling OpenSSL encryption support has not changed since Bacula 1.38. To
build Bacula with encryption support, you will need the OpenSSL libraries and headers installed. When
configuring Bacula, use:

./configure --with-openssl ...

40.2 Encryption Technical Details

The implementation uses 128bit AES-CBC, with RSA encrypted symmetric session keys. The RSA key is
user supplied. If you are running OpenSSL 0.9.8 or later, the signed file hash uses SHA-256 – otherwise,
SHA-1 is used.

End-user configuration settings for the algorithms are not currently exposed – only the algorithms listed
above are used. However, the data written to Volume supports arbitrary symmetric, asymmetric, and digest
algorithms for future extensibility, and the back-end implementation currently supports:

Symmetric Encryption:

- 128, 192, and 256-bit AES-CBC

- Blowfish-CBC

Asymmetric Encryption (used to encrypt symmetric session keys):

- RSA

Digest Algorithms:

- MD5

- SHA1

- SHA256

- SHA512

The various algorithms are exposed via an entirely re-usable, OpenSSL-agnostic API (ie, it is possible to drop
in a new encryption backend). The Volume format is DER-encoded ASN.1, modeled after the Cryptographic
Message Syntax from RFC 3852. Unfortunately, using CMS directly was not possible, as at the time of coding
a free software streaming DER decoder/encoder was not available.

40.3 Decrypting with a Master Key

It is preferable to retain a secure, non-encrypted copy of the client’s own encryption keypair. However,
should you lose the client’s keypair, recovery with the master keypair is possible.

You must:

• Concatenate the master private and public key into a single keypair file, ie: cat master.key master.cert
>master.keypair

• Set the PKI Keypair statement in your bacula configuration file:

PKI Keypair = master.keypair

• Start the restore. The master keypair will be used to decrypt the file data.

Bacula Version 5.0.3 329

40.4 Generating Private/Public Encryption Keys

Generate a Master Key Pair with:

openssl genrsa -out master.key 2048

openssl req -new -key master.key -x509 -out master.cert

Generate a File Daemon Key Pair for each FD:

openssl genrsa -out fd-example.key 2048

openssl req -new -key fd-example.key -x509 -out fd-example.cert

cat fd-example.key fd-example.cert >fd-example.pem

Note, there seems to be a lot of confusion around the file extensions given to these keys. For example, a
.pem file can contain all the following: private keys (RSA and DSA), public keys (RSA and DSA) and (x509)
certificates. It is the default format for OpenSSL. It stores data Base64 encoded DER format, surrounded by
ASCII headers, so is suitable for text mode transfers between systems. A .pem file may contain any number
of keys either public or private. We use it in cases where there is both a public and a private key.

Typically, above we have used the .cert extension to refer to X509 certificate encoding that contains only a
single public key.

40.5 Example Data Encryption Configuration

bacula-fd.conf

FileDaemon {

Name = example-fd

FDport = 9102 # where we listen for the director

WorkingDirectory = /var/bacula/working

Pid Directory = /var/run

Maximum Concurrent Jobs = 20

PKI Signatures = Yes # Enable Data Signing

PKI Encryption = Yes # Enable Data Encryption

PKI Keypair = "/etc/bacula/fd-example.pem" # Public and Private Keys

PKI Master Key = "/etc/bacula/master.cert" # ONLY the Public Key

}

330 Bacula Version 5.0.3

Chapter 41

Using Bacula to Improve Computer
Security

Since Bacula maintains a catalog of files, their attributes, and either SHA1 or MD5 signatures, it can be an
ideal tool for improving computer security. This is done by making a snapshot of your system files with a
Verify Job and then checking the current state of your system against the snapshot, on a regular basis (e.g.
nightly).

The first step is to set up a Verify Job and to run it with:

Level = InitCatalog

The InitCatalog level tells Bacula simply to get the information on the specified files and to put it into
the catalog. That is your database is initialized and no comparison is done. The InitCatalog is normally
run one time manually.

Thereafter, you will run a Verify Job on a daily (or whatever) basis with:

Level = Catalog

The Level = Catalog level tells Bacula to compare the current state of the files on the Client to the last
InitCatalog that is stored in the catalog and to report any differences. See the example below for the
format of the output.

You decide what files you want to form your ”snapshot” by specifying them in a FileSet resource, and
normally, they will be system files that do not change, or that only certain features change.

Then you decide what attributes of each file you want compared by specifying comparison options on the
Include statements that you use in the FileSet resource of your Catalog Jobs.

41.1 The Details

In the discussion that follows, we will make reference to the Verify Configuration Example that is included
below in the A Verify Configuration Example section. You might want to look it over now to get an
idea of what it does.

The main elements consist of adding a schedule, which will normally be run daily, or perhaps more often.
This is provided by the VerifyCycle Schedule, which runs at 5:05 in the morning every day.

Then you must define a Job, much as is done below. We recommend that the Job name contain the name

331

332 Bacula Version 5.0.3

of your machine as well as the word Verify or Check. In our example, we named it MatouVerify. This
will permit you to easily identify your job when running it from the Console.

You will notice that most records of the Job are quite standard, but that the FileSet resource contains
verify=pins1 option in addition to the standard signature=SHA1 option. If you don’t want SHA1
signature comparison, and we cannot imagine why not, you can drop the signature=SHA1 and none will
be computed nor stored in the catalog. Or alternatively, you can use verify=pins5 and signature=MD5,
which will use the MD5 hash algorithm. The MD5 hash computes faster than SHA1, but is cryptographically
less secure.

The verify=pins1 is ignored during the InitCatalog Job, but is used during the subsequent Catalog
Jobs to specify what attributes of the files should be compared to those found in the catalog. pins1 is a
reasonable set to begin with, but you may want to look at the details of these and other options. They can
be found in the FileSet Resource section of this manual. Briefly, however, the p of the pins1 tells Verify to
compare the permissions bits, the i is to compare inodes, the n causes comparison of the number of links,
the s compares the file size, and the 1 compares the SHA1 checksums (this requires the signature=SHA1
option to have been set also).

You must also specify the Client and the Catalog resources for your Verify job, but you probably already
have them created for your client and do not need to recreate them, they are included in the example below
for completeness.

As mentioned above, you will need to have a FileSet resource for the Verify job, which will have the
additional verify=pins1 option. You will want to take some care in defining the list of files to be included
in your FileSet. Basically, you will want to include all system (or other) files that should not change on your
system. If you select files, such as log files or mail files, which are constantly changing, your automatic Verify
job will be constantly finding differences. The objective in forming the FileSet is to choose all unchanging
important system files. Then if any of those files has changed, you will be notified, and you can determine
if it changed because you loaded a new package, or because someone has broken into your computer and
modified your files. The example below shows a list of files that I use on my Red Hat 7.3 system. Since I
didn’t spend a lot of time working on it, it probably is missing a few important files (if you find one, please
send it to me). On the other hand, as long as I don’t load any new packages, none of these files change
during normal operation of the system.

41.2 Running the Verify

The first thing you will want to do is to run an InitCatalog level Verify Job. This will initialize the catalog
to contain the file information that will later be used as a basis for comparisons with the actual file system,
thus allowing you to detect any changes (and possible intrusions into your system).

The easiest way to run the InitCatalog is manually with the console program by simply entering run. You
will be presented with a list of Jobs that can be run, and you will choose the one that corresponds to your
Verify Job, MatouVerify in this example.

The defined Job resources are:

1: MatouVerify

2: kernsrestore

3: Filetest

4: kernsave

Select Job resource (1-4): 1

Next, the console program will show you the basic parameters of the Job and ask you:

Run Verify job

JobName: MatouVerify

FileSet: Verify Set

Level: Catalog

Client: MatouVerify

Storage: DLTDrive

OK to run? (yes/mod/no): mod

Bacula Version 5.0.3 333

Here, you want to respond mod to modify the parameters because the Level is by default set to Catalog
and we want to run an InitCatalog Job. After responding mod, the console will ask:

Parameters to modify:

1: Job

2: Level

3: FileSet

4: Client

5: Storage

Select parameter to modify (1-5): 2

you should select number 2 to modify the Level, and it will display:

Levels:

1: Initialize Catalog

2: Verify from Catalog

3: Verify Volume

4: Verify Volume Data

Select level (1-4): 1

Choose item 1, and you will see the final display:

Run Verify job

JobName: MatouVerify

FileSet: Verify Set

Level: Initcatalog

Client: MatouVerify

Storage: DLTDrive

OK to run? (yes/mod/no): yes

at which point you respond yes, and the Job will begin.

Thereafter the Job will automatically start according to the schedule you have defined. If you wish to
immediately verify it, you can simply run a Verify Catalog which will be the default. No differences should
be found.

41.3 What To Do When Differences Are Found

If you have setup your messages correctly, you should be notified if there are any differences and exactly
what they are. For example, below is the email received after doing an update of OpenSSH:

HeadMan: Start Verify JobId 83 Job=RufusVerify.2002-06-25.21:41:05

HeadMan: Verifying against Init JobId 70 run 2002-06-21 18:58:51

HeadMan: File: /etc/pam.d/sshd

HeadMan: st_ino differ. Cat: 4674b File: 46765

HeadMan: File: /etc/rc.d/init.d/sshd

HeadMan: st_ino differ. Cat: 56230 File: 56231

HeadMan: File: /etc/ssh/ssh_config

HeadMan: st_ino differ. Cat: 81317 File: 8131b

HeadMan: st_size differ. Cat: 1202 File: 1297

HeadMan: SHA1 differs.

HeadMan: File: /etc/ssh/sshd_config

HeadMan: st_ino differ. Cat: 81398 File: 81325

HeadMan: st_size differ. Cat: 1182 File: 1579

HeadMan: SHA1 differs.

HeadMan: File: /etc/ssh/ssh_config.rpmnew

HeadMan: st_ino differ. Cat: 812dd File: 812b3

HeadMan: st_size differ. Cat: 1167 File: 1114

HeadMan: SHA1 differs.

HeadMan: File: /etc/ssh/sshd_config.rpmnew

HeadMan: st_ino differ. Cat: 81397 File: 812dd

HeadMan: st_size differ. Cat: 2528 File: 2407

334 Bacula Version 5.0.3

HeadMan: SHA1 differs.

HeadMan: File: /etc/ssh/moduli

HeadMan: st_ino differ. Cat: 812b3 File: 812ab

HeadMan: File: /usr/bin/scp

HeadMan: st_ino differ. Cat: 5e07e File: 5e343

HeadMan: st_size differ. Cat: 26728 File: 26952

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/ssh-keygen

HeadMan: st_ino differ. Cat: 5df1d File: 5e07e

HeadMan: st_size differ. Cat: 80488 File: 84648

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/sftp

HeadMan: st_ino differ. Cat: 5e2e8 File: 5df1d

HeadMan: st_size differ. Cat: 46952 File: 46984

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/slogin

HeadMan: st_ino differ. Cat: 5e359 File: 5e2e8

HeadMan: File: /usr/bin/ssh

HeadMan: st_mode differ. Cat: 89ed File: 81ed

HeadMan: st_ino differ. Cat: 5e35a File: 5e359

HeadMan: st_size differ. Cat: 219932 File: 234440

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/ssh-add

HeadMan: st_ino differ. Cat: 5e35b File: 5e35a

HeadMan: st_size differ. Cat: 76328 File: 81448

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/ssh-agent

HeadMan: st_ino differ. Cat: 5e35c File: 5e35b

HeadMan: st_size differ. Cat: 43208 File: 47368

HeadMan: SHA1 differs.

HeadMan: File: /usr/bin/ssh-keyscan

HeadMan: st_ino differ. Cat: 5e35d File: 5e96a

HeadMan: st_size differ. Cat: 139272 File: 151560

HeadMan: SHA1 differs.

HeadMan: 25-Jun-2002 21:41

JobId: 83

Job: RufusVerify.2002-06-25.21:41:05

FileSet: Verify Set

Verify Level: Catalog

Client: RufusVerify

Start time: 25-Jun-2002 21:41

End time: 25-Jun-2002 21:41

Files Examined: 4,258

Termination: Verify Differences

At this point, it was obvious that these files were modified during installation of the RPMs. If you want to
be super safe, you should run a Verify Level=Catalog immediately before installing new software to verify
that there are no differences, then run a Verify Level=InitCatalog immediately after the installation.

To keep the above email from being sent every night when the Verify Job runs, we simply re-run the Verify
Job setting the level to InitCatalog (as we did above in the very beginning). This will re-establish the
current state of the system as your new basis for future comparisons. Take care that you don’t do an
InitCatalog after someone has placed a Trojan horse on your system!

If you have included in your FileSet a file that is changed by the normal operation of your system, you will
get false matches, and you will need to modify the FileSet to exclude that file (or not to Include it), and
then re-run the InitCatalog.

The FileSet that is shown below is what I use on my Red Hat 7.3 system. With a bit more thought, you
can probably add quite a number of additional files that should be monitored.

41.4 A Verify Configuration Example

Schedule {

Name = "VerifyCycle"

Run = Level=Catalog sun-sat at 5:05

}

Job {

Bacula Version 5.0.3 335

Name = "MatouVerify"

Type = Verify

Level = Catalog # default level

Client = MatouVerify

FileSet = "Verify Set"

Messages = Standard

Storage = DLTDrive

Pool = Default

Schedule = "VerifyCycle"

}

#

The list of files in this FileSet should be carefully

chosen. This is a good starting point.

#

FileSet {

Name = "Verify Set"

Include {

Options {

verify=pins1

signature=SHA1

}

File = /boot

File = /bin

File = /sbin

File = /usr/bin

File = /lib

File = /root/.ssh

File = /home/kern/.ssh

File = /var/named

File = /etc/sysconfig

File = /etc/ssh

File = /etc/security

File = /etc/exports

File = /etc/rc.d/init.d

File = /etc/sendmail.cf

File = /etc/sysctl.conf

File = /etc/services

File = /etc/xinetd.d

File = /etc/hosts.allow

File = /etc/hosts.deny

File = /etc/hosts

File = /etc/modules.conf

File = /etc/named.conf

File = /etc/pam.d

File = /etc/resolv.conf

}

Exclude = { }

P

Client {

Name = MatouVerify

Address = lmatou

Catalog = Bacula

Password = ""

File Retention = 80d # 80 days

Job Retention = 1y # one year

AutoPrune = yes # Prune expired Jobs/Files

}

Catalog {

Name = Bacula

dbname = verify; user = bacula; password = ""

}

336 Bacula Version 5.0.3

Chapter 42

Installing and Configuring MySQL

42.1 Installing and Configuring MySQL – Phase I

If you use the ./configure --with-mysql=mysql-directory statement for configuring Bacula, you will need
MySQL version 4.1 or later installed in the mysql-directory. If you are using one of the new modes such
as ANSI/ISO compatibility, you may experience problems.

If MySQL is installed in the standard system location, you need only enter --with-mysql since the configure
program will search all the standard locations. If you install MySQL in your home directory or some other
non-standard directory, you will need to provide the full path to it.

Installing and Configuring MySQL is not difficult but can be confusing the first time. As a consequence,
below, we list the steps that we used to install it on our machines. Please note that our configuration leaves
MySQL without any user passwords. This may be an undesirable situation if you have other users on your
system.

The notes below describe how to build MySQL from the source tar files. If you have a pre-installed MySQL,
you can return to complete the installation of Bacula, then come back to Phase II of the MySQL installation.
If you wish to install MySQL from rpms, you will probably need to install the following:

mysql-<version>.rpm

mysql-server-<version>.rpm

mysql-devel-<version>.rpm

If you wish to install them from debs, you will probably need the following:

mysql-server-<version>.deb

mysql-client-<version>.deb

libmysqlclient15-dev-<version>.deb

libmysqlclient15off-<version>.deb

The names of the packages may vary from distribution to distribution. It is important to have the devel
or dev package loaded as it contains the libraries and header files necessary to build Bacula. There may be
additional packages that are required to install the above, for example, zlib and openssl.

Once these packages are installed, you will be able to build Bacula (using the files installed with the mysql
package, then run MySQL using the files installed with mysql-server. If you have installed MySQL by debs
or rpms, please skip Phase I below, and return to complete the installation of Bacula, then come back to
Phase II of the MySQL installation when indicated to do so.

Beginning with Bacula version 1.31, the thread safe version of the MySQL client library is used, and hence
you should add the --enable-thread-safe-client option to the ./configure as shown below:

337

338 Bacula Version 5.0.3

1. Download MySQL source code from www.mysql.com/downloads

2. Detar it with something like:

tar xvfz mysql-filename

Note, the above command requires GNU tar. If you do not have GNU tar, a command such as:

zcat mysql-filename | tar xvf -

will probably accomplish the same thing.

3. cd mysql-source-directory

where you replacemysql-source-directory with the directory name where you put the MySQL source
code.

4. ./configure --enable-thread-safe-client --prefix=mysql-directory

where you replace mysql-directory with the directory name where you want to install mysql. Nor-
mally for system wide use this is /usr/local/mysql. In my case, I use ˜kern/mysql.

5. make

This takes a bit of time.

6. make install

This will put all the necessary binaries, libraries and support files into the mysql-directory that you
specified above.

7. ./scripts/mysql install db

This will create the necessary MySQL databases for controlling user access. Note, this script can also
be found in the bin directory in the installation directory

The MySQL client library mysqlclient requires the gzip compression library libz.a or libz.so. If you are
using rpm packages, these libraries are in the libz-devel package. On Debian systems, you will need to load
the zlib1g-dev package. If you are not using rpms or debs, you will need to find the appropriate package
for your system.

At this point, you should return to completing the installation of Bacula. Later after Bacula is installed,
come back to this chapter to complete the installation. Please note, the installation files used in the second
phase of the MySQL installation are created during the Bacula Installation.

42.2 Installing and Configuring MySQL – Phase II

At this point, you should have built and installed MySQL, or already have a running MySQL, and you
should have configured, built and installed Bacula. If not, please complete these items before proceeding.

Please note that the ./configure used to build Bacula will need to include --with-mysql=mysql-
directory, where mysql-directory is the directory name that you specified on the ./configure command
for configuring MySQL. This is needed so that Bacula can find the necessary include headers and library
files for interfacing to MySQL.

Bacula will install scripts for manipulating the database (create, delete, make tables etc) into the main
installation directory. These files will be of the form * bacula * (e.g. create bacula database). These
files are also available in the <bacula-src>/src/cats directory after running ./configure. If you inspect
create bacula database, you will see that it calls create mysql database. The * bacula * files are provided
for convenience. It doesn’t matter what database you have chosen; create bacula database will always create
your database.

Now you will create the Bacula MySQL database and the tables that Bacula uses.

1. Start mysql. You might want to use the startmysql script provided in the Bacula release.

http://www.mysql.com/downloads

Bacula Version 5.0.3 339

2. cd <install-directory> This directory contains the Bacula catalog interface routines.

3. ./grant mysql privileges This script creates unrestricted access rights for the user bacula. You may
want to modify it to suit your situation. Please note that none of the userids, including root, are
password protected. If you need more security, please assign a password to the root user and to bacula.
The program mysqladmin can be used for this.

4. ./create mysql database This script creates the MySQL bacula database. The databases you create
as well as the access databases will be located in <install-dir>/var/ in a subdirectory with the name
of the database, where <install-dir> is the directory name that you specified on the --prefix option.
This can be important to know if you want to make a special backup of the Bacula database or to
check its size.

5. ./make mysql tables This script creates the MySQL tables used by Bacula.

Each of the three scripts (grant mysql privileges, create mysql database and make mysql tables) allows the
addition of a command line argument. This can be useful for specifying the user and or password. For
example, you might need to add -u root to the command line to have sufficient privilege to create the
Bacula tables.

To take a closer look at the access privileges that you have setup with the above, you can do:

mysql-directory/bin/mysql -u root mysql

select * from user;

42.3 Re-initializing the Catalog Database

After you have done some initial testing with Bacula, you will probably want to re-initialize the catalog
database and throw away all the test Jobs that you ran. To do so, you can do the following:

cd <install-directory>

./drop_mysql_tables

./make_mysql_tables

Please note that all information in the database will be lost and you will be starting from scratch. If you
have written on any Volumes, you must write an end of file mark on the volume so that Bacula can reuse it.
Do so with:

(stop Bacula or unmount the drive)

mt -f /dev/nst0 rewind

mt -f /dev/nst0 weof

Where you should replace /dev/nst0 with the appropriate tape drive device name for your machine.

42.4 Linking Bacula with MySQL

After configuring Bacula with

./configure --enable-thread-safe-client --prefix=<mysql-directory> where <mysql-directory> is in my case
/home/kern/mysql, you may have to configure the loader so that it can find the MySQL shared libraries.
If you have previously followed this procedure and later add the --enable-thread-safe-client options, you
will need to rerun the ldconfig program shown below. If you put MySQL in a standard place such as
/usr/lib or /usr/local/lib this will not be necessary, but in my case it is. The description that follows is
Linux specific. For other operating systems, please consult your manuals on how to do the same thing:

340 Bacula Version 5.0.3

First edit: /etc/ld.so.conf and add a new line to the end of the file with the name of the mysql-directory.
In my case, it is:

/home/kern/mysql/lib/mysql then rebuild the loader’s cache with:

/sbin/ldconfig If you upgrade to a new version of MySQL, the shared library names will probably change,
and you must re-run the /sbin/ldconfig command so that the runtime loader can find them.

Alternatively, your system my have a loader environment variable that can be set. For example, on a Solaris
system where I do not have root permission, I use:

LD LIBRARY PATH=/home/kern/mysql/lib/mysql

Finally, if you have encryption enabled in MySQL, you may need to add -lssl -lcrypto to the link. In that
case, you can either export the appropriate LDFLAGS definition, or alternatively, you can include them
directly on the ./configure line as in:

LDFLAGS="-lssl -lcyrpto" \

./configure \

<your-options>

42.5 Installing MySQL from RPMs

If you are installing MySQL from RPMs, you will need to install both the MySQL binaries and the client
libraries. The client libraries are usually found in a devel package, so you must install:

mysql

mysql-devel

This will be the same with most other package managers too.

42.6 Upgrading MySQL

If you upgrade MySQL, you must reconfigure, rebuild, and re-install Bacula otherwise you are likely to get
bizarre failures. If you install from rpms and you upgrade MySQL, you must also rebuild Bacula. You can
do so by rebuilding from the source rpm. To do so, you may need to modify the bacula.spec file to account
for the new MySQL version.

Chapter 43

Installing and Configuring
PostgreSQL

If you are considering using PostreSQL, you should be aware of their philosophy of upgrades, which could
be destabilizing for a production shop. Basically at every major version upgrade, you are required to dump
your database in an ASCII format, do the upgrade, and then reload your database (or databases). This
is because they frequently update the ”data format” from version to version, and they supply no tools to
automatically do the conversion. If you forget to do the ASCII dump, your database may become totally
useless because none of the new tools can access it due to the format change, and the PostgreSQL server
will not be able to start.

If you are building PostgreSQL from source, please be sure to add the --enable-thread-safety option when
doing the ./configure for PostgreSQL.

43.1 Installing PostgreSQL

If you use the ./configure --with-postgresql=PostgreSQL-Directory statement for configuring Bac-
ula, you will need PostgreSQL version 7.4 or later installed. NOTE! PostgreSQL versions earlier than 7.4
do not work with Bacula. If PostgreSQL is installed in the standard system location, you need only enter
--with-postgresql since the configure program will search all the standard locations. If you install Post-
greSQL in your home directory or some other non-standard directory, you will need to provide the full path
with the --with-postgresql option.

Installing and configuring PostgreSQL is not difficult but can be confusing the first time. If you prefer, you
may want to use a package provided by your chosen operating system. Binary packages are available on
most PostgreSQL mirrors.

If you prefer to install from source, we recommend following the instructions found in the
PostgreSQL documentation.

If you are using FreeBSD, this FreeBSD Diary article will be useful. Even if you are not using FreeBSD, the
article will contain useful configuration and setup information.

If you configure the Batch Insert code in Bacula (attribute inserts are 10 times faster), you must be using a
PostgreSQL that was built with the --enable-thread-safety option, otherwise you will get data corruption.
Most major Linux distros have thread safety turned on, but it is better to check. One way is to see if the
PostgreSQL library that Bacula will be linked against references pthreads. This can be done with a command
such as:

nm /usr/lib/libpq.a | grep pthread_mutex_lock

The above command should print a line that looks like:

341

http://www.postgresql.org/docs/
http://www.freebsddiary.org/postgresql.php

342 Bacula Version 5.0.3

U pthread_mutex_lock

if does, then everything is OK. If it prints nothing, do not enable batch inserts when building Bacula.

After installing PostgreSQL, you should return to completing the installation of Bacula. Later, after Bacula
is installed, come back to this chapter to complete the installation. Please note, the installation files used in
the second phase of the PostgreSQL installation are created during the Bacula Installation. You must still
come back to complete the second phase of the PostgreSQL installation even if you installed binaries (e.g.
rpm, deb, ...).

43.2 Configuring PostgreSQL

At this point, you should have built and installed PostgreSQL, or already have a running PostgreSQL,
and you should have configured, built and installed Bacula. If not, please complete these items before
proceeding.

Please note that the ./configure used to build Bacula will need to include --with-
postgresql=PostgreSQL-directory, where PostgreSQL-directory is the directory name that
you specified on the ./configure command for configuring PostgreSQL (if you didn’t specify a directory or
PostgreSQL is installed in a default location, you do not need to specify the directory). This is needed so
that Bacula can find the necessary include headers and library files for interfacing to PostgreSQL.

An important thing to note here is that Bacula makes two connections to the PostgreSQL server for each
backup job that is currently running. If you are intending to run a large number of concurrent jobs, check
the value of max connections in your PostgreSQL configuration file to ensure that it is larger than the
setting Maximum Concurrent Jobs in your director configuration. Setting this too low will result
in some backup jobs failing to run correctly!

Bacula will install scripts for manipulating the database (create, delete, make tables etc) into the main
installation directory. These files will be of the form * bacula * (e.g. create bacula database). These
files are also available in the <bacula-src>/src/cats directory after running ./configure. If you inspect
create bacula database, you will see that it calls create postgresql database. The * bacula * files are provided
for convenience. It doesn’t matter what database you have chosen; create bacula database will always create
your database.

Now you will create the Bacula PostgreSQL database and the tables that Bacula uses. These instructions
assume that you already have PostgreSQL running. You will need to perform these steps as a user that is
able to create new databases. This can be the PostgreSQL user (on most systems, this is the pgsql user).

1. cd <install-directory>

This directory contains the Bacula catalog interface routines.

2. Create the database owner (bacula) On many systems, the PostreSQL master owner is pgsql and on
others such as Red Hat and Fedora it is postgres. You can find out which it is by examining your
/etc/passwd file. To create a new user under either your name or with say the name bacula, you can
do the following:

su

(enter root password)

su pgsql (or postgres)

createuser bacula

Shall the new user be allowed to create databases? (y/n) y

Shall the new user be allowed to create more new users? (y/n) (choose

what you want)

exit

Normally the bacula user must be able to create new databases, if you use the script in the next item,
or you will have to create one for it, but it does not need to create new users.

Bacula Version 5.0.3 343

3. ./create bacula database

This script creates the PostgreSQL bacula database. Before running this command, you should
carefully think about what encoding sequence you want for the text fields (paths, files, ...). We strongly
recommend that you use the default value of SQL ASCII that is in the create bacula database script.
Please be warned that if you change this value, your backups may fail. After running the script, you
can check with the command:

psql -l

and the column marked Encoding should be SQL ASCII for all your Bacula databases (normally
bacula).

4. ./make bacula tables

This script creates the PostgreSQL tables used by Bacula.

5. ./grant bacula privileges

This script creates the database user bacula with restricted access rights. You may want to modify it
to suit your situation. Please note that this database is not password protected.

Each of the three scripts (create bacula database, make bacula tables, and grant bacula privileges) allows
the addition of a command line argument. This can be useful for specifying the user name. For example,
you might need to add -h hostname to the command line to specify a remote database server.

To take a closer look at the access privileges that you have setup with the above, you can do:

PostgreSQL-directory/bin/psql --command \\dp bacula

Also, I had an authorization problem with the password. In the end, I had to modify my pg hba.conf file
(in /var/lib/pgsql/data on my machine in /var/lib/postgresql/8.x on others, and in /etc/postgres/8.x/main
on still others – what a mess!) from:

local all all ident sameuser

to

local all all trust

This solved the problem for me, but it is not always a good thing to do from a security standpoint. However,
it allowed me to run my regression scripts without having a password.

A more secure way to perform database authentication is with md5 password hashes. Begin by editing the
pg hba.conf file, and above the existing “local” and “host” lines, add the line:

local bacula bacula md5

then restart the Postgres database server (frequently, this can be done using ”/etc/init.d/postgresql restart”
or ”service postgresql restart”) to put this new authentication rule into effect.

Next, become the Postgres administrator, postgres, either by logging on as the postgres user, or by using su
to become root and then using su - postgres or su - pgsql to become postgres. Add a password to the
bacula database for the bacula user using:

\$ psql bacula

bacula=# alter user bacula with password ’secret’;

ALTER USER

bacula=# \\q

You’ll have to add this password to two locations in the bacula-dir.conf file: once to the Catalog resource
and once to the RunBeforeJob entry in the BackupCatalog Job resource. With the password in place, these
two lines should look something like:

344 Bacula Version 5.0.3

dbname = bacula; user = bacula; password = "secret"

... and ...

WARNING!!! Passing the password via the command line is insecure.

see comments in make_catalog_backup for details.

RunBeforeJob = "/etc/make_catalog_backup bacula bacula secret"

Naturally, you should choose your own significantly more random password, and ensure that the bacula-
dir.conf file containing this password is readable only by the root.

Even with the files containing the database password properly restricted, there is still a security problem
with this approach: on some platforms, the environment variable that is used to supply the password to
Postgres is available to all users of the local system. To eliminate this problem, the Postgres team have
deprecated the use of the environment variable password-passing mechanism and recommend the use of a
.pgpass file instead. To use this mechanism, create a file named .pgpass containing the single line:

localhost:5432:bacula:bacula:secret

This file should be copied into the home directory of all accounts that will need to gain access to the database:
typically, root, bacula, and any users who will make use of any of the console programs. The files must then
have the owner and group set to match the user (so root:root for the copy in root, and so on), and the mode
set to 600, limiting access to the owner of the file.

43.3 Re-initializing the Catalog Database

After you have done some initial testing with Bacula, you will probably want to re-initialize the catalog
database and throw away all the test Jobs that you ran. To do so, you can do the following:

cd <install-directory>

./drop_bacula_tables

./make_bacula_tables

./grant_bacula_privileges

Please note that all information in the database will be lost and you will be starting from scratch. If you
have written on any Volumes, you must write an end of file mark on the volume so that Bacula can reuse it.
Do so with:

(stop Bacula or unmount the drive)

mt -f /dev/nst0 rewind

mt -f /dev/nst0 weof

Where you should replace /dev/nst0 with the appropriate tape drive device name for your machine.

43.4 Installing PostgreSQL from RPMs

If you are installing PostgreSQL from RPMs, you will need to install both the PostgreSQL binaries and the
client libraries. The client libraries are usually found in a devel or dev package, so you must install the
following for rpms:

postgresql

postgresql-devel

postgresql-server

postgresql-libs

and the following for debs:

Bacula Version 5.0.3 345

postgresql

postgresql-common

postgresql-client

postgresql-client-common

libpq5

libpq-dev

These will be similar with most other package managers too. After installing from rpms, you will still need
to run the scripts that set up the database and create the tables as described above.

43.5 Converting from MySQL to PostgreSQL

The conversion procedure presented here was worked out by Norm Dressler <ndressler at dinmar dot com>

This process was tested using the following software versions:

• Linux Ubuntu Lucid

• Mysql Ver 5.0.83

• PostgreSQL 8.4.4

• Bacula 5.0

WARNING: Always as a precaution, take a complete backup of your databases before proceeding with this
process!

1. Shutdown bacula (cd /etc/bacula;./bacula stop)

2. Run the following command to dump your Mysql database:

mysqldump -t -n -c --compatible=postgresql --skip-quote-names --skip-opt \

--disable-keys --lock-tables -u bacula -ppassword bacula \

| grep -v "INSERT INTO Status" \

| sed -e ’s/0000-00-00 00:00:00/1970-01-01 00:00:00/g’ \

| sed -e ’s/\\0//’ > bacula-backup.sql

3. Make a backup of your /etc/bacula directory (but leave the original in place).

4. Go to your Bacula source directory and rebuild it to include PostgreSQL support rather then Mysql
support. Check the config.log file for your original configure command and replace enable-mysql with
enable-postgresql.

5. Recompile Bacula with a make and if everything compiles completely, perform a make install.

6. Shutdown Mysql.

7. Start PostgreSQL on your system.

8. Create a bacula user in Postgres with the createuser command. Depending on your Postgres install,
you may have to SU to the user who has privileges to create a user.

9. Verify your pg hba.conf file contains sufficient permissions to allow bacula to access the server. Mine
has the following since it’s on a secure network:

local all all trust

host all all 127.0.0.1 255.255.255.255 trust

NOTE: you should restart your postgres server if you

made changes

346 Bacula Version 5.0.3

10. Change into the /etc/bacula directory and prepare the database and tables with the following com-
mands:

./create_postgresql_database

./make_postgresql_tables

./grant_postgresql_privileges

11. Verify you have access to the database:

psql -Ubacula bacula

You should not get any errors.

12. Load your database from the Mysql database dump with:

psql -Ubacula bacula <bacula-backup.dmp>

13. Resequence your tables with the following commands:

psql -Ubacula bacula

SELECT SETVAL(’basefiles_baseid_seq’, (SELECT MAX(baseid) FROM basefiles));

SELECT SETVAL(’client_clientid_seq’, (SELECT MAX(clientid) FROM client));

SELECT SETVAL(’file_fileid_seq’, (SELECT MAX(fileid) FROM file));

SELECT SETVAL(’filename_filenameid_seq’, (SELECT MAX(filenameid) FROM filename));

SELECT SETVAL(’fileset_filesetid_seq’, (SELECT MAX(filesetid) FROM fileset));

SELECT SETVAL(’job_jobid_seq’, (SELECT MAX(jobid) FROM job));

SELECT SETVAL(’jobmedia_jobmediaid_seq’, (SELECT MAX(jobmediaid) FROM jobmedia));

SELECT SETVAL(’media_mediaid_seq’, (SELECT MAX(mediaid) FROM media));

SELECT SETVAL(’path_pathid_seq’, (SELECT MAX(pathid) FROM path));

SELECT SETVAL(’basefiles_baseid_seq’, (SELECT MAX(baseid) FROM basefiles));

SELECT SETVAL(’client_clientid_seq’, (SELECT MAX(clientid) FROM client));

SELECT SETVAL(’file_fileid_seq’, (SELECT MAX(fileid) FROM file));

SELECT SETVAL(’filename_filenameid_seq’, (SELECT MAX(filenameid) FROM filename));

SELECT SETVAL(’fileset_filesetid_seq’, (SELECT MAX(filesetid) FROM fileset));

SELECT SETVAL(’job_jobid_seq’, (SELECT MAX(jobid) FROM job));

SELECT SETVAL(’jobmedia_jobmediaid_seq’, (SELECT MAX(jobmediaid) FROM jobmedia));

SELECT SETVAL(’media_mediaid_seq’, (SELECT MAX(mediaid) FROM media));

SELECT SETVAL(’path_pathid_seq’, (SELECT MAX(pathid) FROM path));

SELECT SETVAL(’pool_poolid_seq’, (SELECT MAX(poolid) FROM pool));

SELECT SETVAL(’device_deviceid_seq’, (SELECT MAX(deviceid) FROM device));

SELECT SETVAL(’location_locationid_seq’, (SELECT MAX(locationid) FROM location));

SELECT SETVAL(’locationlog_loclogid_seq’, (SELECT MAX(loclogid) FROM locationlog));

SELECT SETVAL(’log_logid_seq’, (SELECT MAX(logid) FROM log));

SELECT SETVAL(’mediatype_mediatypeid_seq’, (SELECT MAX(mediatypeid) FROM mediatype));

SELECT SETVAL(’storage_storageid_seq’, (SELECT MAX(storageid) FROM storage));

14. At this point, start up Bacula, verify your volume library and perform a test backup to make sure
everything is working properly.

43.6 Upgrading PostgreSQL

If you upgrade PostgreSQL, you must reconfigure, rebuild, and re-install Bacula otherwise you are likely to
get bizarre failures. If you to modify the bacula.spec file to account for the new PostgreSQL version. You
can do so by rebuilding from the source rpm. To do so, you may need install from rpms and you upgrade
PostgreSQL, you must also rebuild Bacula.

Bacula Version 5.0.3 347

43.7 Tuning PostgreSQL

If you despool attributes for many jobs at the same time, you can tune the sequence object for the FileId

field.

psql -Ubacula bacula

ALTER SEQUENCE file_fileid_seq CACHE 1000;

43.8 Credits

Many thanks to Dan Langille for writing the PostgreSQL driver. This will surely become the most popular
database that Bacula supports.

348 Bacula Version 5.0.3

Chapter 44

Installing and Configuring SQLite

Please note that SQLite both versions 2 and 3 are not network enabled, which means that they must be
linked into the Director rather than accessed by the network as MySQL and PostgreSQL are. This has two
consequences:

1. SQLite cannot be used in the bweb web GUI package.

2. If you use SQLite, and your Storage daemon is not on the same machine as your Director, you will
need to transfer your database to the Storage daemon’s machine before you can use any of the SD
tools such as bscan, ...

44.1 Installing and Configuring SQLite – Phase I

If you use the ./configure --with-sqlite statement for configuring Bacula, you will need SQLite version
2.8.16 or later installed. Our standard location (for the moment) for SQLite is in the dependency package
depkgs/sqlite-2.8.16. Please note that the version will be updated as new versions are available and tested.

Installing and Configuring is quite easy.

1. Download the Bacula dependency packages

2. Detar it with something like:

tar xvfz depkgs.tar.gz

Note, the above command requires GNU tar. If you do not have GNU tar, a command such as:

zcat depkgs.tar.gz | tar xvf -

will probably accomplish the same thing.

3. cd depkgs

4. make sqlite

Please note that the ./configure used to buildBacula will need to include --with-sqlite or --with-sqlite3
depending one which version of SQLite you are using. You should not use the --enable-batch-insert
configuration parameter for Bacula if you are using SQLite version 2 as it is probably not thread safe. If you
are using SQLite version 3, you may use the --enable-batch-insert configuration option with Bacula, but
when building SQLite3 you MUST configure it with --enable-threadsafe and --enable-cross-thread-
connections.

349

350 Bacula Version 5.0.3

By default, SQLite3 is now run with PRAGMA synchronous=OFF this increases the speed by more
than 30 time, but it also increases the possibility of a corrupted database if your server crashes (power failure
or kernel bug). If you want more security, you can change the PRAGMA that is used in the file src/version.h.

At this point, you should return to completing the installation of Bacula.

44.2 Installing and Configuring SQLite – Phase II

This phase is done after you have run the ./configure command to configure Bacula.

Bacula will install scripts for manipulating the database (create, delete, make tables etc) into the main
installation directory. These files will be of the form * bacula * (e.g. create bacula database). These
files are also available in the <bacula-src>/src/cats directory after running ./configure. If you inspect
create bacula database, you will see that it calls create sqlite database. The * bacula * files are provided for
convenience. It doesn’t matter what database you have chosen; create bacula database will always create
your database.

At this point, you can create the SQLite database and tables:

1. cd <install-directory>

This directory contains the Bacula catalog interface routines.

2. ./make sqlite tables

This script creates the SQLite database as well as the tables used by Bacula. This script will be
automatically setup by the ./configure program to create a database named bacula.db in Bacula’s
working directory.

44.3 Linking Bacula with SQLite

If you have followed the above steps, this will all happen automatically and the SQLite libraries will be
linked into Bacula.

44.4 Testing SQLite

We have much less ”production” experience using SQLite than using MySQL. SQLite has performed flaw-
lessly for us in all our testing. However, several users have reported corrupted databases while using SQLite.
For that reason, we do not recommend it for production use.

If Bacula crashes with the following type of error when it is started:

Using default Catalog name=MyCatalog DB=bacula

Could not open database "bacula".

sqlite.c:151 Unable to open Database=/var/lib/bacula/bacula.db.

ERR=malformed database schema - unable to open a temporary database file

for storing temporary tables

this is most likely caused by the fact that some versions of SQLite attempt to create a temporary file in the
current directory. If that fails, because Bacula does not have write permission on the current directory, then
you may get this errr. The solution is to start Bacula in a current directory where it has write permission.

Bacula Version 5.0.3 351

44.5 Re-initializing the Catalog Database

After you have done some initial testing with Bacula, you will probably want to re-initialize the catalog
database and throw away all the test Jobs that you ran. To do so, you can do the following:

cd <install-directory>

./drop_sqlite_tables

./make_sqlite_tables

Please note that all information in the database will be lost and you will be starting from scratch. If you
have written on any Volumes, you must write an end of file mark on the volume so that Bacula can reuse it.
Do so with:

(stop Bacula or unmount the drive)

mt -f /dev/nst0 rewind

mt -f /dev/nst0 weof

Where you should replace /dev/nst0 with the appropriate tape drive device name for your machine.

352 Bacula Version 5.0.3

Chapter 45

Catalog Maintenance

Without proper setup and maintenance, your Catalog may continue to grow indefinitely as you run Jobs
and backup Files, and/or it may become very inefficient and slow. How fast the size of your Catalog grows
depends on the number of Jobs you run and how many files they backup. By deleting records within the
database, you can make space available for the new records that will be added during the next Job. By
constantly deleting old expired records (dates older than the Retention period), your database size will
remain constant.

If you started with the default configuration files, they already contain reasonable defaults for a small number
of machines (less than 5), so if you fall into that case, catalog maintenance will not be urgent if you have a
few hundred megabytes of disk space free. Whatever the case may be, some knowledge of retention periods
will be useful.

45.1 Setting Retention Periods

Bacula uses three Retention periods: the File Retention period, the Job Retention period, and the
Volume Retention period. Of these three, the File Retention period is by far the most important in
determining how large your database will become.

The File Retention and the Job Retention are specified in each Client resource as is shown below. The
Volume Retention period is specified in the Pool resource, and the details are given in the next chapter
of this manual.

File Retention = <time-period-specification> The File Retention record defines the length of time
that Bacula will keep File records in the Catalog database. When this time period expires, and if
AutoPrune is set to yes, Bacula will prune (remove) File records that are older than the specified
File Retention period. The pruning will occur at the end of a backup Job for the given Client. Note
that the Client database record contains a copy of the File and Job retention periods, but Bacula uses
the current values found in the Director’s Client resource to do the pruning.

Since File records in the database account for probably 80 percent of the size of the database, you
should carefully determine exactly what File Retention period you need. Once the File records have
been removed from the database, you will no longer be able to restore individual files in a Job. However,
with Bacula version 1.37 and later, as long as the Job record still exists, you will be able to restore all
files in the job.

Retention periods are specified in seconds, but as a convenience, there are a number of modifiers that
permit easy specification in terms of minutes, hours, days, weeks, months, quarters, or years on the
record. See the Configuration chapter of this manual for additional details of modifier specification.

The default File retention period is 60 days.

Job Retention = <time-period-specification> The Job Retention record defines the length of time
that Bacula will keep Job records in the Catalog database. When this time period expires, and if

353

354 Bacula Version 5.0.3

AutoPrune is set to yes Bacula will prune (remove) Job records that are older than the specified
Job Retention period. Note, if a Job record is selected for pruning, all associated File and JobMedia
records will also be pruned regardless of the File Retention period set. As a consequence, you normally
will set the File retention period to be less than the Job retention period.

As mentioned above, once the File records are removed from the database, you will no longer be able to
restore individual files from the Job. However, as long as the Job record remains in the database, you
will be able to restore all the files backuped for the Job (on version 1.37 and later). As a consequence,
it is generally a good idea to retain the Job records much longer than the File records.

The retention period is specified in seconds, but as a convenience, there are a number of modifiers that
permit easy specification in terms of minutes, hours, days, weeks, months, quarters, or years. See the
Configuration chapter of this manual for additional details of modifier specification.

The default Job Retention period is 180 days.

AutoPrune = <yes/no> If AutoPrune is set to yes (default), Bacula will automatically apply the File
retention period and the Job retention period for the Client at the end of the Job.

If you turn this off by setting it to no, your Catalog will grow each time you run a Job.

45.2 Compacting Your MySQL Database

Over time, as noted above, your database will tend to grow. I’ve noticed that even though Bacula regularly
prunes files, MySQL does not effectively use the space, and instead continues growing. To avoid this, from
time to time, you must compact your database. Normally, large commercial database such as Oracle have
commands that will compact a database to reclaim wasted file space. MySQL has the OPTIMIZE TABLE
command that you can use, and SQLite version 2.8.4 and greater has the VACUUM command. We leave
it to you to explore the utility of the OPTIMIZE TABLE command in MySQL.

All database programs have some means of writing the database out in ASCII format and then reloading it.
Doing so will re-create the database from scratch producing a compacted result, so below, we show you how
you can do this for MySQL, PostgreSQL and SQLite.

For a MySQL database, you could write the Bacula database as an ASCII file (bacula.sql) then reload it
by doing the following:

mysqldump -f --opt bacula > bacula.sql

mysql bacula < bacula.sql

rm -f bacula.sql

Depending on the size of your database, this will take more or less time and a fair amount of disk space.
For example, if I cd to the location of the MySQL Bacula database (typically /opt/mysql/var or something
similar) and enter:

du bacula

I get 620,644 which means there are that many blocks containing 1024 bytes each or approximately 635
MB of data. After doing the mysqldump, I had a bacula.sql file that had 174,356 blocks, and after doing
the mysql command to recreate the database, I ended up with a total of 210,464 blocks rather than the
original 629,644. In other words, the compressed version of the database took approximately one third of
the space of the database that had been in use for about a year.

As a consequence, I suggest you monitor the size of your database and from time to time (once every six
months or year), compress it.

Bacula Version 5.0.3 355

45.3 Repairing Your MySQL Database

If you find that you are getting errors writing to your MySQL database, or Bacula hangs each time it tries to
access the database, you should consider running MySQL’s database check and repair routines. The program
you need to run depends on the type of database indexing you are using. If you are using the default, you
will probably want to use myisamchk. For more details on how to do this, please consult the MySQL
document at: http://www.mysql.com/doc/en/Repair.html.

If the errors you are getting are simply SQL warnings, then you might try running dbcheck before (or possibly
after) using the MySQL database repair program. It can clean up many of the orphaned record problems,
and certain other inconsistencies in the Bacula database.

A typical cause of MySQL database problems is if your partition fills. In such a case, you will need to create
additional space on the partition or free up some space then repair the database probably using myisamchk.
Recently my root partition filled and the MySQL database was corrupted. Simply running myisamchk -r
did not fix the problem. However, the following script did the trick for me:

#!/bin/sh

for i in *.MYD ; do

mv $i x${i}

t=‘echo $i | cut -f 1 -d ’.’ -‘

mysql bacula <<END_OF_DATA

set autocommit=1;

truncate table $t;

quit

END_OF_DATA

cp x${i} ${i}

chown mysql:mysql ${i}

myisamchk -r ${t}

done

I invoked it with the following commands:

cd /var/lib/mysql/bacula

./repair

Then after ensuring that the database was correctly fixed, I did:

cd /var/lib/mysql/bacula

rm -f x*.MYD

45.4 MySQL Table is Full

If you are running into the error The table ’File’ is full ..., it is probably because on version 4.x MySQL,
the table is limited by default to a maximum size of 4 GB and you have probably run into the limit. The
solution can be found at: http://dev.mysql.com/doc/refman/5.0/en/full-table.html

You can display the maximum length of your table with:

mysql bacula

SHOW TABLE STATUS FROM bacula like "File";

If the column labeled ”Max data length” is around 4Gb, this is likely to be the source of your problem, and
you can modify it with:

mysql bacula

ALTER TABLE File MAX_ROWS=281474976710656;

http://www.mysql.com/doc/en/Repair.html
http://dev.mysql.com/doc/refman/5.0/en/full-table.html

356 Bacula Version 5.0.3

Alternatively you can modify your /etc/my.conf file before creating the Bacula tables, and in the [mysqld]
section set:

set-variable = myisam_data_pointer_size=6

The above myisam data pointer size must be made before you create your Bacula tables or it will have no
effect.

The row and pointer size changes should already be the default on MySQL version 5.x, so making these
changes should only be necessary on MySQL 4.x depending on the size of your catalog database.

45.5 MySQL Server Has Gone Away

If you are having problems with the MySQL server disconnecting or with messages saying that your MySQL
server has gone away, then please read the MySQL documentation, which can be found at:

http://dev.mysql.com/doc/refman/5.0/en/gone-away.html

45.6 MySQL Temporary Tables

When doing backups with large numbers of files, MySQL creates some temporary tables. When these tables
are small they can be held in system memory, but as they approach some size, they spool off to disk. The
default location for these temp tables is /tmp. Once that space fills up, Bacula daemons such as the Storage
daemon doing spooling can get strange errors. E.g.

Fatal error: spool.c:402 Spool data read error.

Fatal error: backup.c:892 Network send error to SD. ERR=Connection reset by

peer

What you need to do is setup MySQL to use a different (larger) temp directory, which can be set in the
/etc/my.cnf with these variables set:

tmpdir=/path/to/larger/tmpdir

bdb_tmpdir=/path/to/larger/tmpdir

45.7 Repairing Your PostgreSQL Database

The same considerations apply that are indicated above for MySQL. That is, consult the PostgreSQL doc-
uments for how to repair the database, and also consider using Bacula’s dbcheck program if the conditions
are reasonable for using (see above).

45.8 Database Performance Issues

There are a considerable number of ways each of the databases can be tuned to improve the performance.
Going from an untuned database to one that is properly tuned can make a difference of a factor of 100 or
more in the time to insert or search for records.

For each of the databases, you may get significant improvements by adding additional indexes. The comments
in the Bacula make xxx tables give some indications as to what indexes may be appropriate. Please see below
for specific instructions on checking indexes.

http://dev.mysql.com/doc/refman/5.0/en/gone-away.html

Bacula Version 5.0.3 357

For MySQL, what is very important is to use the examine the my.cnf file (usually in /etc/my.cnf). You
may obtain significant performances by switching to the my-large.cnf or my-huge.cnf files that come with
the MySQL source code.

For SQLite3, one significant factor in improving the performance is to ensure that there is a ”PRAGMA
synchronous = NORMAL;” statement. This reduces the number of times that the database flushes the in
memory cache to disk. There are other settings for this PRAGMA that can give even further performance
improvements at the risk of a database corruption if your system crashes.

For PostgreSQL, you might want to consider turning fsync off. Of course doing so can
cause corrupted databases in the event of a machine crash. There are many differ-
ent ways that you can tune PostgreSQL, the following document discusses a few of them:
http://www.varlena.com/varlena/GeneralBits/Tidbits/perf.html.

There is also a PostgreSQL FAQ question number 3.3 that may answer some of your questions about how
to improve performance of the PostgreSQL engine: http://www.postgresql.org/docs/faqs.FAQ.html#3.3.

Also for PostgreSQL, look at what ”effective cache size”. For a 2GB memory machine, you probably want
to set it at 131072, but don’t set it too high. In addition, for a 2GB system, work mem = 256000 and
maintenance work mem = 256000 seem to be reasonable values. Make sure your checkpoint segments is set
to at least 8.

45.9 Performance Issues Indexes

One of the most important considerations for improving performance on the Bacula database is to ensure
that it has all the appropriate indexes. Several users have reported finding that their database did not
have all the indexes in the default configuration. In addition, you may find that because of your own usage
patterns, you need additional indexes.

The most important indexes for performance are the two indexes on the File table. The first index is on
FileId and is automatically made because it is the unique key used to access the table. The other one is
the (JobId, PathId, Filename) index. If these Indexes are not present, your performance may suffer a lot.

45.9.1 PostgreSQL Indexes

On PostgreSQL, you can check to see if you have the proper indexes using the following commands:

psql bacula

select * from pg_indexes where tablename=’file’;

If you do not see output that indicates that all three indexes are created, you can create the two additional
indexes using:

psql bacula

CREATE INDEX file_jobid_idx on file (jobid);

CREATE INDEX file_jpf_idx on file (jobid, pathid, filenameid);

Make sure that you doesn’t have an index on File (filenameid, pathid).

45.9.2 MySQL Indexes

On MySQL, you can check if you have the proper indexes by:

mysql bacula

show index from File;

http://www.varlena.com/varlena/GeneralBits/Tidbits/perf.html
http://www.postgresql.org/docs/faqs.FAQ.html#3.3

358 Bacula Version 5.0.3

If the indexes are not present, especially the JobId index, you can create them with the following commands:

mysql bacula

CREATE INDEX file_jobid_idx on File (JobId);

CREATE INDEX file_jpf_idx on File (JobId, FilenameId, PathId);

Though normally not a problem, you should ensure that the indexes defined for Filename and Path are
both set to 255 characters. Some users reported performance problems when their indexes were set to 50
characters. To check, do:

mysql bacula

show index from Filename;

show index from Path;

and what is important is that for Filename, you have an index with Key name ”Name” and Sub part ”255”.
For Path, you should have a Key name ”Path” and Sub part ”255”. If one or the other does not exist or
the Sub part is less that 255, you can drop and recreate the appropriate index with:

mysql bacula

DROP INDEX Path on Path;

CREATE INDEX Path on Path (Path(255);

DROP INDEX Name on Filename;

CREATE INDEX Name on Filename (Name(255));

45.9.3 SQLite Indexes

On SQLite, you can check if you have the proper indexes by:

sqlite <path>/bacula.db

select * from sqlite_master where type=’index’ and tbl_name=’File’;

If the indexes are not present, especially the JobId index, you can create them with the following commands:

sqlite <path>/bacula.db

CREATE INDEX file_jobid_idx on File (JobId);

CREATE INDEX file_jfp_idx on File (JobId, PathId, FilenameId);

45.10 Compacting Your PostgreSQL Database

Over time, as noted above, your database will tend to grow. I’ve noticed that even though Bacula regularly
prunes files, PostgreSQL has a VACUUM command that will compact your database for you. Alternatively
you may want to use the vacuumdb command, which can be run from a cron job.

All database programs have some means of writing the database out in ASCII format and then reloading it.
Doing so will re-create the database from scratch producing a compacted result, so below, we show you how
you can do this for PostgreSQL.

For a PostgreSQL database, you could write the Bacula database as an ASCII file (bacula.sql) then reload
it by doing the following:

pg_dump -c bacula > bacula.sql

cat bacula.sql | psql bacula

rm -f bacula.sql

Bacula Version 5.0.3 359

Depending on the size of your database, this will take more or less time and a fair amount of disk space.
For example, you can cd to the location of the Bacula database (typically /usr/local/pgsql/data or possible
/var/lib/pgsql/data) and check the size.

There are certain PostgreSQL users who do not recommend the above procedure. They have the following
to say: PostgreSQL does not need to be dumped/restored to keep the database efficient. A normal process
of vacuuming will prevent the database from every getting too large. If you want to fine-tweak the database
storage, commands such as VACUUM FULL, REINDEX, and CLUSTER exist specifically to keep you from
having to do a dump/restore.

Finally, you might want to look at the PostgreSQL documentation on this subject at
http://www.postgresql.org/docs/8.1/interactive/maintenance.html.

45.11 Compacting Your SQLite Database

First please read the previous section that explains why it is necessary to compress a database. SQLite
version 2.8.4 and greater have the Vacuum command for compacting the database.

cd {\bf working-directory}

echo ’vacuum;’ | sqlite bacula.db

As an alternative, you can use the following commands, adapted to your system:

cd {\bf working-directory}

echo ’.dump’ | sqlite bacula.db > bacula.sql

rm -f bacula.db

sqlite bacula.db < bacula.sql

rm -f bacula.sql

Where working-directory is the directory that you specified in the Director’s configuration file. Note,
in the case of SQLite, it is necessary to completely delete (rm) the old database before creating a new
compressed version.

45.12 Migrating from SQLite to MySQL or PostgreSQL

You may begin using Bacula with SQLite then later find that you want to switch to MySQL or Postgres for
any of a number of reasons: SQLite tends to use more disk than MySQL; when the database is corrupted
it is often more catastrophic than with MySQL or PostgreSQL. Several users have succeeded in converting
by exporting the SQLite data and then processing it with Perl scripts prior to putting it into MySQL or
PostgreSQL. This is, however, not a simple process. Scripts are available on bacula source distribution under
examples/database.

45.13 Backing Up Your Bacula Database

If ever the machine on which your Bacula database crashes, and you need to restore from backup tapes, one
of your first priorities will probably be to recover the database. Although Bacula will happily backup your
catalog database if it is specified in the FileSet, this is not a very good way to do it, because the database
will be saved while Bacula is modifying it. Thus the database may be in an instable state. Worse yet, you
will backup the database before all the Bacula updates have been applied.

To resolve these problems, you need to backup the database after all the backup jobs have been run. In
addition, you will want to make a copy while Bacula is not modifying it. To do so, you can use two
scripts provided in the release make catalog backup and delete catalog backup. These files will be

http://www.postgresql.org/docs/8.1/interactive/maintenance.html

360 Bacula Version 5.0.3

automatically generated along with all the other Bacula scripts. The first script will make an ASCII copy
of your Bacula database into bacula.sql in the working directory you specified in your configuration, and
the second will delete the bacula.sql file.

The basic sequence of events to make this work correctly is as follows:

• Run all your nightly backups

• After running your nightly backups, run a Catalog backup Job

• The Catalog backup job must be scheduled after your last nightly backup

• You use RunBeforeJob to create the ASCII backup file and RunAfterJob to clean up

Assuming that you start all your nightly backup jobs at 1:05 am (and that they run one after another), you
can do the catalog backup with the following additional Director configuration statements:

Backup the catalog database (after the nightly save)

Job {

Name = "BackupCatalog"

Type = Backup

Client=rufus-fd

FileSet="Catalog"

Schedule = "WeeklyCycleAfterBackup"

Storage = DLTDrive

Messages = Standard

Pool = Default

WARNING!!! Passing the password via the command line is insecure.

see comments in make_catalog_backup for details.

RunBeforeJob = "/home/kern/bacula/bin/make_catalog_backup"

RunAfterJob = "/home/kern/bacula/bin/delete_catalog_backup"

Write Bootstrap = "/home/kern/bacula/working/BackupCatalog.bsr"

}

This schedule does the catalog. It starts after the WeeklyCycle

Schedule {

Name = "WeeklyCycleAfterBackup

Run = Level=Full sun-sat at 1:10

}

This is the backup of the catalog

FileSet {

Name = "Catalog"

Include {

Options {

signature=MD5

}

File = \lt{}working_directory\gt{}/bacula.sql

}

}

Be sure to write a bootstrap file as in the above example. However, it is preferable to write or copy the
bootstrap file to another computer. It will allow you to quickly recover the database backup should that be
necessary. If you do not have a bootstrap file, it is still possible to recover your database backup, but it will
be more work and take longer.

45.14 Security considerations

We provide make catalog backup as an example of what can be used to backup your Bacula database. We
expect you to take security precautions relevant to your situation. make catalog backup is designed to take
a password on the command line. This is fine on machines with only trusted users. It is not acceptable on
machines without trusted users. Most database systems provide a alternative method, which does not place
the password on the command line.

The make catalog backup script contains some warnings about how to use it. Please read those tips.

Bacula Version 5.0.3 361

To help you get started, we know PostgreSQL has a password file, .pgpass, and we know MySQL has
.my.cnf.

Only you can decide what is appropriate for your situation. We have provided you with a starting point.
We hope it helps.

45.15 Backing Up Third Party Databases

If you are running a database in production mode on your machine, Bacula will happily backup the files,
but if the database is in use while Bacula is reading it, you may back it up in an unstable state.

The best solution is to shutdown your database before backing it up, or use some tool specific to your
database to make a valid live copy perhaps by dumping the database in ASCII format. I am not a database
expert, so I cannot provide you advice on how to do this, but if you are unsure about how to backup
your database, you might try visiting the Backup Central site, which has been renamed Storage Mountain
(www.backupcentral.com). In particular, their Free Backup and Recovery Software page has links to scripts
that show you how to shutdown and backup most major databases.

45.16 Database Size

As mentioned above, if you do not do automatic pruning, your Catalog will grow each time you run a Job.
Normally, you should decide how long you want File records to be maintained in the Catalog and set the
File Retention period to that time. Then you can either wait and see how big your Catalog gets or make
a calculation assuming approximately 154 bytes for each File saved and knowing the number of Files that
are saved during each backup and the number of Clients you backup.

For example, suppose you do a backup of two systems, each with 100,000 files. Suppose further that you do
a Full backup weekly and an Incremental every day, and that the Incremental backup typically saves 4,000
files. The size of your database after a month can roughly be calculated as:

Size = 154 * No. Systems * (100,000 * 4 + 10,000 * 26)

where we have assumed four weeks in a month and 26 incremental backups per month. This would give the
following:

Size = 154 * 2 * (100,000 * 4 + 10,000 * 26)

or

Size = 308 * (400,000 + 260,000)

or

Size = 203,280,000 bytes

So for the above two systems, we should expect to have a database size of approximately 200 Megabytes. Of
course, this will vary according to how many files are actually backed up.

Below are some statistics for a MySQL database containing Job records for five Clients beginning September
2001 through May 2002 (8.5 months) and File records for the last 80 days. (Older File records have been
pruned). For these systems, only the user files and system files that change are backed up. The core part of
the system is assumed to be easily reloaded from the Red Hat rpms.

In the list below, the files (corresponding to Bacula Tables) with the extension .MYD contain the data
records whereas files with the extension .MYI contain indexes.

You will note that the File records (containing the file attributes) make up the large bulk of the number
of records as well as the space used (459 Mega Bytes including the indexes). As a consequence, the most
important Retention period will be the File Retention period. A quick calculation shows that for each File
that is saved, the database grows by approximately 150 bytes.

http://www.postgresql.org/docs/8.2/static/libpq-pgpass.html
http://dev.mysql.com/doc/refman/4.1/en/password-security.html
http://www.backupcentral.com/toc-free-backup-software.html

362 Bacula Version 5.0.3

Size in

Bytes Records File

============ ========= ===========

168 5 Client.MYD

3,072 Client.MYI

344,394,684 3,080,191 File.MYD

115,280,896 File.MYI

2,590,316 106,902 Filename.MYD

3,026,944 Filename.MYI

184 4 FileSet.MYD

2,048 FileSet.MYI

49,062 1,326 JobMedia.MYD

30,720 JobMedia.MYI

141,752 1,378 Job.MYD

13,312 Job.MYI

1,004 11 Media.MYD

3,072 Media.MYI

1,299,512 22,233 Path.MYD

581,632 Path.MYI

36 1 Pool.MYD

3,072 Pool.MYI

5 1 Version.MYD

1,024 Version.MYI

This database has a total size of approximately 450 Megabytes.

If we were using SQLite, the determination of the total database size would be much easier since it is a single
file, but we would have less insight to the size of the individual tables as we have in this case.

Note, SQLite databases may be as much as 50% larger than MySQL databases due to the fact that all data is
stored as ASCII strings. That is even binary integers are stored as ASCII strings, and this seems to increase
the space needed.

Chapter 46

Bacula Security Issues

• Security means being able to restore your files, so read the Critical Items Chapter of this manual.

• The Clients (bacula-fd) must run as root to be able to access all the system files.

• It is not necessary to run the Director as root.

• It is not necessary to run the Storage daemon as root, but you must ensure that it can open the tape
drives, which are often restricted to root access by default. In addition, if you do not run the Storage
daemon as root, it will not be able to automatically set your tape drive parameters on most OSes since
these functions, unfortunately require root access.

• You should restrict access to the Bacula configuration files, so that the passwords are not world-
readable. The Bacula daemons are password protected using CRAM-MD5 (i.e. the password is not
sent across the network). This will ensure that not everyone can access the daemons. It is a reasonably
good protection, but can be cracked by experts.

• If you are using the recommended ports 9101, 9102, and 9103, you will probably want to protect these
ports from external access using a firewall and/or using tcp wrappers (etc/hosts.allow).

• By default, all data that is sent across the network is unencrypted. However, Bacula does
support TLS (transport layer security) and can encrypt transmitted data. Please read the
TLS (SSL) Communications Encryption section of this manual.

• You should ensure that the Bacula working directories are readable and writable only by the Bacula
daemons.

• If you are using MySQL it is not necessary for it to run with root permission.

• The default Bacula grant-mysql-permissions script grants all permissions to use the MySQL
database without a password. If you want security, please tighten this up!

• Don’t forget that Bacula is a network program, so anyone anywhere on the network with the console
program and the Director’s password can access Bacula and the backed up data.

• You can restrict what IP addresses Bacula will bind to by using the appropriate DirAddress, FDAd-
dress, or SDAddress records in the respective daemon configuration files.

• Be aware that if you are backing up your database using the default script, if you have a password on
your database, it will be passed as a command line option to that script, and any user will be able to
see this information. If you want it to be secure, you will need to pass it by an environment variable
or a secure file.

See also Backing Up Your Bacula Database - Security Considerations for more information.

363

364 Bacula Version 5.0.3

46.1 Backward Compatibility

One of the major goals of Bacula is to ensure that you can restore tapes (I’ll use the word tape to include
disk Volumes) that you wrote years ago. This means that each new version of Bacula should be able to read
old format tapes. The first problem you will have is to ensure that the hardware is still working some years
down the road, and the second problem will be to ensure that the media will still be good, then your OS
must be able to interface to the device, and finally Bacula must be able to recognize old formats. All the
problems except the last are ones that we cannot solve, but by careful planning you can.

Since the very beginning of Bacula (January 2000) until today (December 2005), there have been two major
Bacula tape formats. The second format was introduced in version 1.27 in November of 2002, and it has
not changed since then. In principle, Bacula can still read the original format, but I haven’t tried it lately
so who knows ...

Though the tape format is fixed, the kinds of data that we can put on the tapes are extensible, and that
is how we added new features such as ACLs, Win32 data, encrypted data, ... Obviously, an older version
of Bacula would not know how to read these newer data streams, but each newer version of Bacula should
know how to read all the older streams.

If you want to be 100should:

1. Try reading old tapes from time to time – e.g. at least once a year.

2. Keep statically linked copies of every version of Bacula that you use in production then if for some reason,
we botch up old tape compatibility, you can always pull out an old copy of Bacula ...

The second point is probably overkill but if you want to be sure, it may save you someday.

46.2 Configuring and Testing TCP Wrappers

TCP Wrappers are implemented if you turn them on when configuring (./configure --with-tcp-
wrappers). With this code enabled, you may control who may access your daemons. This control is
done by modifying the file: /etc/hosts.allow. The program name that Bacula uses when applying these
access restrictions is the name you specify in the daemon configuration file (see below for examples). You
must not use the twist option in your /etc/hosts.allow or it will terminate the Bacula daemon when a
connection is refused.

The exact name of the package you need loaded to build with TCP wrappers depends on the system. For
example, on SuSE, the TCP wrappers libraries needed to link Bacula are contained in the tcpd-devel package.
On Red Hat, the package is named tcp wrappers.

Dan Langille has provided the following information on configuring and testing TCP wrappers with Bacula.

If you read hosts options(5), you will see an option called twist. This option replaces the current process by
an instance of the specified shell command. Typically, something like this is used:

ALL : ALL \

: severity auth.info \

: twist /bin/echo "You are not welcome to use %d from %h."

The libwrap code tries to avoid twist if it runs in a resident process, but that test will not protect the first
hosts access() call. This will result in the process (e.g. bacula-fd, bacula-sd, bacula-dir) being terminated
if the first connection to their port results in the twist option being invoked. The potential, and I stress
potential, exists for an attacker to prevent the daemons from running. This situation is eliminated if your
/etc/hosts.allow file contains an appropriate rule set. The following example is sufficient:

undef-fd : localhost : allow

undef-sd : localhost : allow

Bacula Version 5.0.3 365

undef-dir : localhost : allow

undef-fd : ALL : deny

undef-sd : ALL : deny

undef-dir : ALL : deny

You must adjust the names to be the same as the Name directives found in each of the daemon configuration
files. They are, in general, not the same as the binary daemon names. It is not possible to use the daemon
names because multiple daemons may be running on the same machine but with different configurations.

In these examples, the Director is undef-dir, the Storage Daemon is undef-sd, and the File Daemon is undef-
fd. Adjust to suit your situation. The above example rules assume that the SD, FD, and DIR all reside on
the same box. If you have a remote FD client, then the following rule set on the remote client will suffice:

undef-fd : director.example.org : allow

undef-fd : ALL : deny

where director.example.org is the host which will be contacting the client (ie. the box on which the Bacula
Director daemon runs). The use of ”ALL : deny” ensures that the twist option (if present) is not invoked.
To properly test your configuration, start the daemon(s), then attempt to connect from an IP address which
should be able to connect. You should see something like this:

$ telnet undef 9103

Trying 192.168.0.56...

Connected to undef.example.org.

Escape character is ’^]’.

Connection closed by foreign host.

$

This is the correct response. If you see this:

$ telnet undef 9103

Trying 192.168.0.56...

Connected to undef.example.org.

Escape character is ’^]’.

You are not welcome to use undef-sd from xeon.example.org.

Connection closed by foreign host.

$

then twist has been invoked and your configuration is not correct and you need to add the deny statement.
It is important to note that your testing must include restarting the daemons after each connection attempt.
You can also tcpdchk(8) and tcpdmatch(8) to validate your /etc/hosts.allow rules. Here is a simple test
using tcpdmatch:

$ tcpdmatch undef-dir xeon.example.org

warning: undef-dir: no such process name in /etc/inetd.conf

client: hostname xeon.example.org

client: address 192.168.0.18

server: process undef-dir

matched: /etc/hosts.allow line 40

option: allow

access: granted

If you are running Bacula as a standalone daemon, the warning above can be safely ignored. Here is an
example which indicates that your rules are missing a deny statement and the twist option has been invoked.

$ tcpdmatch undef-dir 10.0.0.1

warning: undef-dir: no such process name in /etc/inetd.conf

client: address 10.0.0.1

server: process undef-dir

matched: /etc/hosts.allow line 91

option: severity auth.info

option: twist /bin/echo "You are not welcome to use

undef-dir from 10.0.0.1."

access: delegated

366 Bacula Version 5.0.3

46.3 Running as non-root

Security advice from Dan Langille:

It is a good idea to run daemons with the lowest possible privileges. In other words, if you can, don’t run
applications as root which do not have to be root. The Storage Daemon and the Director Daemon do not
need to be root. The File Daemon needs to be root in order to access all files on your system. In order to
run as non-root, you need to create a user and a group. Choosing bacula as both the user name and the
group name sounds like a good idea to me.

The FreeBSD port creates this user and group for you. Here is what those entries looked like on my FreeBSD
laptop:

bacula:*:1002:1002::0:0:Bacula Daemon:/var/db/bacula:/sbin/nologin

I used vipw to create this entry. I selected a User ID and Group ID of 1002 as they were unused on my
system.

I also created a group in /etc/group:

bacula:*:1002:

The bacula user (as opposed to the Bacula daemon) will have a home directory of /var/db/bacula which
is the default location for the Bacula database.

Now that you have both a bacula user and a bacula group, you can secure the bacula home directory by
issuing this command:

chown -R bacula:bacula /var/db/bacula/

This ensures that only the bacula user can access this directory. It also means that if we run the Director
and the Storage daemon as bacula, those daemons also have restricted access. This would not be the case if
they were running as root.

It is important to note that the storage daemon actually needs to be in the operator group for normal access
to tape drives etc (at least on a FreeBSD system, that’s how things are set up by default) Such devices are
normally chown root:operator. It is easier and less error prone to make Bacula a member of that group than
it is to play around with system permissions.

Starting the Bacula daemons

To start the bacula daemons on a FreeBSD system, issue the following command:

/usr/local/etc/rc.d/bacula-dir start

/usr/local/etc/rc.d/bacula-sd start

/usr/local/etc/rc.d/bacula-fd start

To confirm they are all running:

$ ps auwx | grep bacula

root 63418 0.0 0.3 1856 1036 ?? Ss 4:09PM 0:00.00

/usr/local/sbin/bacula-fd -v -c /usr/local/etc/bacula-fd.conf

bacula 63416 0.0 0.3 2040 1172 ?? Ss 4:09PM 0:00.01

/usr/local/sbin/bacula-sd -v -c /usr/local/etc/bacula-sd.conf

bacula 63422 0.0 0.4 2360 1440 ?? Ss 4:09PM 0:00.00

/usr/local/sbin/bacula-dir -v -c /usr/local/etc/bacula-dir.conf

Chapter 47

The Bootstrap File

The information in this chapter is provided so that you may either create your own bootstrap files, or
so that you can edit a bootstrap file produced by Bacula. However, normally the bootstrap file will be
automatically created for you during the restore command command in the Console program, or by using a
Write Bootstrap record in your Backup Jobs, and thus you will never need to know the details of this file.

The bootstrap file contains ASCII information that permits precise specification of what files should be
restored, what volume they are on, and where they are on the volume. It is a relatively compact form of
specifying the information, is human readable, and can be edited with any text editor.

47.1 Bootstrap File Format

The general format of a bootstrap file is:

<keyword>= <value>

Where each keyword and the value specify which files to restore. More precisely the keyword and their
values serve to limit which files will be restored and thus act as a filter. The absence of a keyword means
that all records will be accepted.

Blank lines and lines beginning with a pound sign (#) in the bootstrap file are ignored.

There are keywords which permit filtering by Volume, Client, Job, FileIndex, Session Id, Session Time, ...

The more keywords that are specified, the more selective the specification of which files to restore will be.
In fact, each keyword is ANDed with other keywords that may be present.

For example,

Volume = Test-001

VolSessionId = 1

VolSessionTime = 108927638

directs the Storage daemon (or the bextract program) to restore only those files on Volume Test-001 AND
having VolumeSessionId equal to one AND having VolumeSession time equal to 108927638.

The full set of permitted keywords presented in the order in which they are matched against the Volume
records are:

Volume The value field specifies what Volume the following commands apply to. Each Volume specification
becomes the current Volume, to which all the following commands apply until a new current Volume
(if any) is specified. If the Volume name contains spaces, it should be enclosed in quotes. At lease one
Volume specification is required.

367

368 Bacula Version 5.0.3

Count The value is the total number of files that will be restored for this Volume. This allows the Storage
daemon to know when to stop reading the Volume. This value is optional.

VolFile The value is a file number, a list of file numbers, or a range of file numbers to match on the current
Volume. The file number represents the physical file on the Volume where the data is stored. For a
tape volume, this record is used to position to the correct starting file, and once the tape is past the
last specified file, reading will stop.

VolBlock The value is a block number, a list of block numbers, or a range of block numbers to match on
the current Volume. The block number represents the physical block within the file on the Volume
where the data is stored.

VolSessionTime The value specifies a Volume Session Time to be matched from the current volume.

VolSessionId The value specifies a VolSessionId, a list of volume session ids, or a range of volume session
ids to be matched from the current Volume. Each VolSessionId and VolSessionTime pair corresponds
to a unique Job that is backed up on the Volume.

JobId The value specifies a JobId, list of JobIds, or range of JobIds to be selected from the current Volume.
Note, the JobId may not be unique if you have multiple Directors, or if you have reinitialized your
database. The JobId filter works only if you do not run multiple simultaneous jobs. This value is
optional and not used by Bacula to restore files.

Job The value specifies a Job name or list of Job names to be matched on the current Volume. The Job
corresponds to a unique VolSessionId and VolSessionTime pair. However, the Job is perhaps a bit
more readable by humans. Standard regular expressions (wildcards) may be used to match Job names.
The Job filter works only if you do not run multiple simultaneous jobs. This value is optional and not
used by Bacula to restore files.

Client The value specifies a Client name or list of Clients to will be matched on the current Volume.
Standard regular expressions (wildcards) may be used to match Client names. The Client filter works
only if you do not run multiple simultaneous jobs. This value is optional and not used by Bacula to
restore files.

FileIndex The value specifies a FileIndex, list of FileIndexes, or range of FileIndexes to be selected from
the current Volume. Each file (data) stored on a Volume within a Session has a unique FileIndex.
For each Session, the first file written is assigned FileIndex equal to one and incremented for each file
backed up.

This for a given Volume, the triple VolSessionId, VolSessionTime, and FileIndex uniquely identifies a
file stored on the Volume. Multiple copies of the same file may be stored on the same Volume, but for
each file, the triple VolSessionId, VolSessionTime, and FileIndex will be unique. This triple is stored
in the Catalog database for each file.

To restore a particular file, this value (or a range of FileIndexes) is required.

FileRegex The value is a regular expression. When specified, only matching filenames will be restored.

FileRegex=^/etc/passwd(.old)?

Slot The value specifies the autochanger slot. There may be only a single Slot specification for each Volume.

Stream The value specifies a Stream, a list of Streams, or a range of Streams to be selected from the current
Volume. Unless you really know what you are doing (the internals of Bacula), you should avoid this
specification. This value is optional and not used by Bacula to restore files.

*JobType Not yet implemented.

*JobLevel Not yet implemented.

The Volume record is a bit special in that it must be the first record. The other keyword records may
appear in any order and any number following a Volume record.

Multiple Volume records may be specified in the same bootstrap file, but each one starts a new set of filter
criteria for the Volume.

Bacula Version 5.0.3 369

In processing the bootstrap file within the current Volume, each filter specified by a keyword is ANDed
with the next. Thus,

Volume = Test-01

Client = "My machine"

FileIndex = 1

will match records on Volume Test-01 AND Client records for My machine AND FileIndex equal to
one.

Multiple occurrences of the same record are ORed together. Thus,

Volume = Test-01

Client = "My machine"

Client = "Backup machine"

FileIndex = 1

will match records on Volume Test-01 AND (Client records for My machine OR Backup machine)
AND FileIndex equal to one.

For integer values, you may supply a range or a list, and for all other values except Volumes, you may specify
a list. A list is equivalent to multiple records of the same keyword. For example,

Volume = Test-01

Client = "My machine", "Backup machine"

FileIndex = 1-20, 35

will match records on Volume Test-01 AND (Client records for My machine OR Backup machine)
AND (FileIndex 1 OR 2 OR 3 ... OR 20 OR 35).

As previously mentioned above, there may be multiple Volume records in the same bootstrap file. Each new
Volume definition begins a new set of filter conditions that apply to that Volume and will be ORed with
any other Volume definitions.

As an example, suppose we query for the current set of tapes to restore all files on Client Rufus using the
query command in the console program:

Using default Catalog name=MySQL DB=bacula

*query

Available queries:

1: List Job totals:

2: List where a file is saved:

3: List where the most recent copies of a file are saved:

4: List total files/bytes by Job:

5: List total files/bytes by Volume:

6: List last 10 Full Backups for a Client:

7: List Volumes used by selected JobId:

8: List Volumes to Restore All Files:

Choose a query (1-8): 8

Enter Client Name: Rufus

+-------+------------------+------------+-----------+----------+------------+

| JobId | StartTime | VolumeName | StartFile | VolSesId | VolSesTime |

+-------+------------------+------------+-----------+----------+------------+

| 154 | 2002-05-30 12:08 | test-02 | 0 | 1 | 1022753312 |

| 202 | 2002-06-15 10:16 | test-02 | 0 | 2 | 1024128917 |

| 203 | 2002-06-15 11:12 | test-02 | 3 | 1 | 1024132350 |

| 204 | 2002-06-18 08:11 | test-02 | 4 | 1 | 1024380678 |

+-------+------------------+------------+-----------+----------+------------+

The output shows us that there are four Jobs that must be restored. The first one is a Full backup, and the
following three are all Incremental backups.

The following bootstrap file will restore those files:

370 Bacula Version 5.0.3

Volume=test-02

VolSessionId=1

VolSessionTime=1022753312

Volume=test-02

VolSessionId=2

VolSessionTime=1024128917

Volume=test-02

VolSessionId=1

VolSessionTime=1024132350

Volume=test-02

VolSessionId=1

VolSessionTime=1024380678

As a final example, assume that the initial Full save spanned two Volumes. The output from query might
look like:

+-------+------------------+------------+-----------+----------+------------+

| JobId | StartTime | VolumeName | StartFile | VolSesId | VolSesTime |

+-------+------------------+------------+-----------+----------+------------+

| 242 | 2002-06-25 16:50 | File0003 | 0 | 1 | 1025016612 |

| 242 | 2002-06-25 16:50 | File0004 | 0 | 1 | 1025016612 |

| 243 | 2002-06-25 16:52 | File0005 | 0 | 2 | 1025016612 |

| 246 | 2002-06-25 19:19 | File0006 | 0 | 2 | 1025025494 |

+-------+------------------+------------+-----------+----------+------------+

and the following bootstrap file would restore those files:

Volume=File0003

VolSessionId=1

VolSessionTime=1025016612

Volume=File0004

VolSessionId=1

VolSessionTime=1025016612

Volume=File0005

VolSessionId=2

VolSessionTime=1025016612

Volume=File0006

VolSessionId=2

VolSessionTime=1025025494

47.2 Automatic Generation of Bootstrap Files

One thing that is probably worth knowing: the bootstrap files that are generated automatically at the end of
the job are not as optimized as those generated by the restore command. This is because during Incremental
and Differential jobs, the records pertaining to the files written for the Job are appended to the end of the
bootstrap file. As consequence, all the files saved to an Incremental or Differential job will be restored first
by the Full save, then by any Incremental or Differential saves.

When the bootstrap file is generated for the restore command, only one copy (the most recent) of each file
is restored.

So if you have spare cycles on your machine, you could optimize the bootstrap files by doing the following:

./bconsole

restore client=xxx select all

done

no

quit

Backup bootstrap file.

The above will not work if you have multiple FileSets because that will be an extra prompt. However, the
restore client=xxx select all builds the in-memory tree, selecting everything and creates the bootstrap
file.

Bacula Version 5.0.3 371

The no answers the Do you want to run this (yes/mod/no) question.

47.3 Bootstrap for bscan

If you have a very large number of Volumes to scan with bscan, you may exceed the command line limit
(511 characters). I that case, you can create a simple bootstrap file that consists of only the volume names.
An example might be:

Volume="Vol001"

Volume="Vol002"

Volume="Vol003"

Volume="Vol004"

Volume="Vol005"

47.4 A Final Bootstrap Example

If you want to extract or copy a single Job, you can do it by selecting by JobId (code not tested) or better
yet, if you know the VolSessionTime and the VolSessionId (printed on Job report and in Catalog), specifying
this is by far the best. Using the VolSessionTime and VolSessionId is the way Bacula does restores. A bsr
file might look like the following:

Volume="Vol001"

VolSessionId=10

VolSessionTime=1080847820

If you know how many files are backed up (on the job report), you can enormously speed up the selection
by adding (let’s assume there are 157 files):

FileIndex=1-157

Count=157

Finally, if you know the File number where the Job starts, you can also cause bcopy to forward space to the
right file without reading every record:

VolFile=20

There is nothing magic or complicated about a BSR file. Parsing it and properly applying it within Bacula
is magic, but you don’t need to worry about that.

If you want to see a *real* bsr file, simply fire up the restore command in the console program, select
something, then answer no when it prompts to run the job. Then look at the file restore.bsr in your
working directory.

372 Bacula Version 5.0.3

Chapter 48

Bacula Copyright, Trademark, and
Licenses

There are a number of different licenses that are used in Bacula. If you have a printed copy of this manual,
the details of each of the licenses referred to in this chapter can be found in the online version of the manual
at http://www.bacula.org.

48.1 FDL

The GNU Free Documentation License (FDL) is used for this manual, which is a free and open license. This
means that you may freely reproduce it and even make changes to it. However, rather than distribute your
own version of this manual, we would much prefer if you would send any corrections or changes to the Bacula
project.

The most recent version of the manual can always be found online at http://www.bacula.org.

48.2 GPL

The vast bulk of the source code is released under the GNU General Public License version 2..

Most of this code is copyrighted: Copyright c©2000-2009 Free Software Foundation Europe e.V.

Portions may be copyrighted by other people. These files are released under different licenses which are
compatible with the Bacula GPLv2 license.

48.3 LGPL

Some of the Bacula library source code is released under the GNU Lesser General Public License. This
permits third parties to use these parts of our code in their proprietary programs to interface to Bacula.

48.4 Public Domain

Some of the Bacula code, or code that Bacula references, has been released to the public domain. E.g.
md5.c, SQLite.

373

http://www.bacula.org
http://www.bacula.org

374 Bacula Version 5.0.3

48.5 Trademark

Bacula
R©

is a registered trademark of Kern Sibbald.

48.6 Fiduciary License Agreement

Developers who have contributed significant changes to the Bacula code should have signed a Fiduciary
License Agreement (FLA), which guarantees them the right to use the code they have developed, and also
ensures that the Free Software Foundation Europe (and thus the Bacula project) has the rights to the code.
This Fiduciary License Agreement is found on the Bacula web site at:

http://www.bacula.org/en/FLA-bacula.en.pdf

and if you are submitting code, you should fill it out then sent to:

Kern Sibbald
Cotes-de-Montmoiret 9
1012 Lausanne
Switzerland

When you send in such a complete document, please notify me: kern at sibbald dot com.

48.7 Disclaimer

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE
STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE
PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL
ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

http://www.bacula.org/en/FLA-bacula.en.pdf

Chapter 49

GNU Free Documentation License

Version 1.2, November 2002

Copyright c©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is
not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document ”free”
in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and
publisher a way to get credit for their work, while not being considered responsible for modifications made
by others.

This License is a kind of ”copyleft”, which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless
of subject matter or whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-
wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
”Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is
addressed as ”you”. You accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A ”Modified Version” of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A ”Secondary Section” is a named appendix or a front-matter section of the Document that deals exclu-
sively with the relationship of the publishers or authors of the Document to the Document’s overall subject

375

376 Bacula Version 5.0.3

(or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the
Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.)
The relationship could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section does
not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document
may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be
at most 5 words, and a Back-Cover Text may be at most 25 words.

A ”Transparent” copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some
widely available drawing editor, and that is suitable for input to text formatters or for automatic translation
to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent
file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not ”Transparent” is called ”Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats
include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors
for output purposes only.

The ”Title Page” means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, ”Title Page” means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section ”Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands
for a specific section name mentioned below, such as ”Acknowledgements”, ”Dedications”, ”Endorse-
ments”, or ”History”.) To ”Preserve the Title” of such a section when you modify the Document
means that it remains a section ”Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies
to the Document. These Warranty Disclaimers are considered to be included by reference in this License,
but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have
is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, pro-
vided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this Li-
cense. You may not use technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a
large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

Bacula Version 5.0.3 377

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque
copy a computer-network location from which the general network-using public has access to download using
public-standard network protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified Version
to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and
from those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the
Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section Entitled ”History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

378 Bacula Version 5.0.3

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the ”History” section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the Title of the section, and
preserve in the section all the substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled ”Endorsements”, provided it contains nothing but endorsements of your
Modified Version by various parties–for example, statements of peer review or that the text has been approved
by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or by
arrangement made by the same entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names
for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined
in section 4 above for modified versions, provided that you include in the combination all of the Invariant
Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined
work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled ”History” in the various original documents,
forming one section Entitled ”History”; likewise combine any sections Entitled ”Acknowledgements”, and
any sections Entitled ”Dedications”. You must delete all sections Entitled ”Endorsements”.

6. COLLECTIONS OF DOCUMENTS

Bacula Version 5.0.3 379

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for verbatim copying of each of the
documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, is called an ”aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual
works permit. When the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include the original English
version of this License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the original version
will prevail.

If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”History”, the requirement
(section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License ”or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

380 Bacula Version 5.0.3

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation License, Version 1.2 or any later
version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover
Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled ”GNU
Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the ”with...Texts.” line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST,
and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their
use in free software.

Bacula Version 5.0.3 381

GNU General Public License

image of a Philosophical GNU

• What to do if you see a possible GPL violation

• Translations of the GPL

49.1 Table of Contents

• GNU GENERAL PUBLIC LICENSE

– Preamble

– TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

– How to Apply These Terms to Your New Programs

49.2 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

49.3 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public License is intended to guarantee your freedom to share and change free software--to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation’s software and to any other program whose authors commit to using it. (Some other
Free Software Foundation software is covered by the GNU Library General Public License instead.) You can
apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask
you to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the
recipients all the rights that you have. You must make sure that they, too, receive or can get the source
code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone understands that there
is no warranty for this free software. If the software is modified by someone else and passed on, we want its

http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/copyleft/gpl-violation.html
http://www.gnu.org/copyleft/copyleft.html#translations

382 Bacula Version 5.0.3

recipients to know that what they have is not the original, so that any problems introduced by others will
not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program pro-
prietary. To prevent this, we have made it clear that any patent must be licensed for everyone’s free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

49.4 TERMS AND CONDITIONS

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The ”Program”, below, refers to
any such program or work, and a ”work based on the Program” means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim
or with modifications and/or translated into another language. (Hereinafter, translation is included without
limitation in the term ”modification”.) Each licensee is addressed as ”you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered
only if its contents constitute a work based on the Program (independent of having been made by running
the Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based
on the Program, and copy and distribute such modifications or work under the terms of Section 1 above,
provided that you also meet all of these conditions:

• a) You must cause the modified files to carry prominent notices stating that you changed the files and
the date of any change.

• b) You must cause any work that you distribute or publish, that in whole or in part contains or is
derived from the Program or any part thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

• c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that
you provide a warranty) and that users may redistribute the program under these conditions, and
telling the user how to view a copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when you distribute them as separate works.
But when you distribute the same sections as part of a whole which is a work based on the Program, the
distribution of the whole must be on the terms of this License, whose permissions for other licensees extend
to the entire whole, and thus to each and every part regardless of who wrote it.

Bacula Version 5.0.3 383

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by
you; rather, the intent is to exercise the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

• a) Accompany it with the complete corresponding machine-readable source code, which must be dis-
tributed under the terms of Sections 1 and 2 above on a medium customarily used for software inter-
change; or,

• b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge
no more than your cost of physically performing source distribution, a complete machine-readable copy
of the corresponding source code, to be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange; or,

• c) Accompany it with the information you received as to the offer to distribute corresponding source
code. (This alternative is allowed only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any associ-
ated interface definition files, plus the scripts used to control compilation and installation of the executable.
However, as a special exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you
permission to modify or distribute the Program or its derivative works. These actions are prohibited by law
if you do not accept this License. Therefore, by modifying or distributing the Program (or any work based
on the Program), you indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients’ exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

384 Bacula Version 5.0.3

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and ”any later version”, you have the option of following the terms and conditions
either of that version or of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version ever published by the Free
Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM ”AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABIL-
ITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND
PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFEC-
TIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PRO-
GRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

Bacula Version 5.0.3 385

49.5 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way
to achieve this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source
file to most effectively convey the exclusion of warranty; and each file should have at least the ”copyright”
line and a pointer to where the full notice is found.

{\em one line to give the program’s name and an idea of what it does.}

Copyright (C) {\em yyyy} {\em name of author}

This program is free software; you can redistribute it and/or

modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2

of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA

02110-1301 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) {\em year} {\em name of author}

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details

type ‘show w’. This is free software, and you are welcome

to redistribute it under certain conditions; type ‘show c’

for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the General
Public License. Of course, the commands you use may be called something other than ‘show w’ and ‘show

c’; they could even be mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a ”copyright
disclaimer” for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright

interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

{\em signature of Ty Coon}, 1 April 1989

Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your
program is a subroutine library, you may consider it more useful to permit linking proprietary applications
with the library. If this is what you want to do, use the GNU Library General Public License instead of this
License. Return to GNU’s home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact the FSF.

Comments on these web pages to webmasters@www.gnu.org, send other questions to gnu@gnu.org.

Copyright notice above. Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA

Updated: 3 Jan 2000 rms

http://www.gnu.org/home.html
mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org

386 Bacula Version 5.0.3

GNU Lesser General Public License

image of a Philosophical GNU [English — Japanese]

• Why you shouldn’t use the Lesser GPL for your next library

• What to do if you see a possible LGPL violation

• Translations of the LGPL

• The GNU Lesser General Public License as a text file

• The GNU Lesser General Public License as a Texinfo file

This GNU Lesser General Public License counts as the successor of the GNU Library Gen-
eral Public License. For an explanation of why this change was necessary, read the
Why you shouldn’t use the Lesser GPL for your next library article.

49.6 Table of Contents

• GNU LESSER GENERAL PUBLIC LICENSE

– Preamble

– TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

– How to Apply These Terms to Your New Libraries

49.7 GNU LESSER GENERAL PUBLIC LICENSE

Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies

of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts

as the successor of the GNU Library Public License, version 2, hence

the version number 2.1.]

49.8 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the
GNU General Public Licenses are intended to guarantee your freedom to share and change free software--to
make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some specially designated software
packages--typically libraries--of the Free Software Foundation and other authors who decide to use it.
You can use it too, but we suggest you first think carefully about whether this license or the ordinary
General Public License is the better strategy to use in any particular case, based on the explanations below.

When we speak of free software, we are referring to freedom of use, not price. Our General Public Licenses
are designed to make sure that you have the freedom to distribute copies of free software (and charge for
this service if you wish); that you receive source code or can get it if you want it; that you can change the
software and use pieces of it in new free programs; and that you are informed that you can do these things.

http://www.gnu.org/graphics/philosophicalgnu.html
http://www.gnu.org/copyleft/lesser.html
http://www.gnu.org/copyleft/lesser.ja.html
http://www.gnu.org/philosophy/why-not-lgpl.html
http://www.gnu.org/copyleft/gpl-violation.html
http://www.gnu.org/copyleft/copyleft.html#translationsLGPL
http://www.gnu.org/copyleft/lesser.txt
http://www.gnu.org/copyleft/lesser.texi
http://www.gnu.org/philosophy/why-not-lgpl.html

Bacula Version 5.0.3 387

To protect your rights, we need to make restrictions that forbid distributors to deny you these rights or
to ask you to surrender these rights. These restrictions translate to certain responsibilities for you if you
distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis or for a fee, you must give the recipients
all the rights that we gave you. You must make sure that they, too, receive or can get the source code. If
you link other code with the library, you must provide complete object files to the recipients, so that they
can relink them with the library after making changes to the library and recompiling it. And you must show
them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the library, and (2) we offer you this
license, which gives you legal permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that there is no warranty for the free library. Also,
if the library is modified by someone else and passed on, the recipients should know that what they have is
not the original version, so that the original author’s reputation will not be affected by problems that might
be introduced by others.

Finally, software patents pose a constant threat to the existence of any free program. We wish to make sure
that a company cannot effectively restrict the users of a free program by obtaining a restrictive license from
a patent holder. Therefore, we insist that any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the ordinary GNU General Public License. This
license, the GNU Lesser General Public License, applies to certain designated libraries, and is quite different
from the ordinary General Public License. We use this license for certain libraries in order to permit linking
those libraries into non-free programs.

When a program is linked with a library, whether statically or using a shared library, the combination of the
two is legally speaking a combined work, a derivative of the original library. The ordinary General Public
License therefore permits such linking only if the entire combination fits its criteria of freedom. The Lesser
General Public License permits more lax criteria for linking other code with the library.

We call this license the ”Lesser” General Public License because it does Less to protect the user’s freedom
than the ordinary General Public License. It also provides other free software developers Less of an advantage
over competing non-free programs. These disadvantages are the reason we use the ordinary General Public
License for many libraries. However, the Lesser license provides advantages in certain special circumstances.

For example, on rare occasions, there may be a special need to encourage the widest possible use of a certain
library, so that it becomes a de-facto standard. To achieve this, non-free programs must be allowed to use
the library. A more frequent case is that a free library does the same job as widely used non-free libraries.
In this case, there is little to gain by limiting the free library to free software only, so we use the Lesser
General Public License.

In other cases, permission to use a particular library in non-free programs enables a greater number of people
to use a large body of free software. For example, permission to use the GNU C Library in non-free programs
enables many more people to use the whole GNU operating system, as well as its variant, the GNU/Linux
operating system.

Although the Lesser General Public License is Less protective of the users’ freedom, it does ensure that the
user of a program that is linked with the Library has the freedom and the wherewithal to run that program
using a modified version of the Library.

The precise terms and conditions for copying, distribution and modification follow. Pay close attention to
the difference between a ”work based on the library” and a ”work that uses the library”. The former contains
code derived from the library, whereas the latter must be combined with the library in order to run.

49.9 TERMS AND CONDITIONS

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

388 Bacula Version 5.0.3

0. This License Agreement applies to any software library or other program which contains a notice placed
by the copyright holder or other authorized party saying it may be distributed under the terms of this Lesser
General Public License (also called ”this License”). Each licensee is addressed as ”you”.

A ”library” means a collection of software functions and/or data prepared so as to be conveniently linked
with application programs (which use some of those functions and data) to form executables.

The ”Library”, below, refers to any such software library or work which has been distributed under these
terms. A ”work based on the Library” means either the Library or any derivative work under copyright law:
that is to say, a work containing the Library or a portion of it, either verbatim or with modifications and/or
translated straightforwardly into another language. (Hereinafter, translation is included without limitation
in the term ”modification”.)

”Source code” for a work means the preferred form of the work for making modifications to it. For a library,
complete source code means all the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and installation of the library.

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running a program using the Library is not restricted, and output from such a program
is covered only if its contents constitute a work based on the Library (independent of the use of the Library
in a tool for writing it). Whether that is true depends on what the Library does and what the program that
uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s complete source code as you receive it,
in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the
absence of any warranty; and distribute a copy of this License along with the Library.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Library or any portion of it, thus forming a work based on the
Library, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

• a) The modified work must itself be a software library.

• b) You must cause the files modified to carry prominent notices stating that you changed the files and
the date of any change.

• c) You must cause the whole of the work to be licensed at no charge to all third parties under the
terms of this License.

• d) If a facility in the modified Library refers to a function or a table of data to be supplied by an
application program that uses the facility, other than as an argument passed when the facility is
invoked, then you must make a good faith effort to ensure that, in the event an application does not
supply such function or table, the facility still operates, and performs whatever part of its purpose
remains meaningful.

(For example, a function in a library to compute square roots has a purpose that is entirely well-
defined independent of the application. Therefore, Subsection 2d requires that any application-supplied
function or table used by this function must be optional: if the application does not supply it, the
square root function must still compute square roots.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are
not derived from the Library, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them
as separate works. But when you distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right to control the distribution of derivative or collective
works based on the Library.

Bacula Version 5.0.3 389

In addition, mere aggregation of another work not based on the Library with the Library (or with a
work based on the Library) on a volume of a storage or distribution medium does not bring the other
work under the scope of this License.

3. You may opt to apply the terms of the ordinary GNU General Public License instead of this License to a
given copy of the Library. To do this, you must alter all the notices that refer to this License, so that they
refer to the ordinary GNU General Public License, version 2, instead of to this License. (If a newer version
than version 2 of the ordinary GNU General Public License has appeared, then you can specify that version
instead if you wish.) Do not make any other change in these notices.

Once this change is made in a given copy, it is irreversible for that copy, so the ordinary GNU General Public
License applies to all subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of the Library into a program that is not a
library.

4. You may copy and distribute the Library (or a portion or derivative of it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you accompany it with
the complete corresponding machine-readable source code, which must be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange.

If distribution of object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place satisfies the requirement to distribute the
source code, even though third parties are not compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the Library, but is designed to work with the
Library by being compiled or linked with it, is called a ”work that uses the Library”. Such a work, in
isolation, is not a derivative work of the Library, and therefore falls outside the scope of this License.

However, linking a ”work that uses the Library” with the Library creates an executable that is a derivative
of the Library (because it contains portions of the Library), rather than a ”work that uses the library”. The
executable is therefore covered by this License. Section 6 states terms for distribution of such executables.

When a ”work that uses the Library” uses material from a header file that is part of the Library, the object
code for the work may be a derivative work of the Library even though the source code is not. Whether this
is true is especially significant if the work can be linked without the Library, or if the work is itself a library.
The threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data structure layouts and accessors, and small macros
and small inline functions (ten lines or less in length), then the use of the object file is unrestricted, regardless
of whether it is legally a derivative work. (Executables containing this object code plus portions of the Library
will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may distribute the object code for the work under
the terms of Section 6. Any executables containing that work also fall under Section 6, whether or not they
are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or link a ”work that uses the Library” with
the Library to produce a work containing portions of the Library, and distribute that work under terms of
your choice, provided that the terms permit modification of the work for the customer’s own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the Library is used in it and that the
Library and its use are covered by this License. You must supply a copy of this License. If the work during
execution displays copyright notices, you must include the copyright notice for the Library among them, as
well as a reference directing the user to the copy of this License. Also, you must do one of these things:

• a) Accompany the work with the complete corresponding machine-readable source code for the Library
including whatever changes were used in the work (which must be distributed under Sections 1 and 2
above); and, if the work is an executable linked with the Library, with the complete machine-readable
”work that uses the Library”, as object code and/or source code, so that the user can modify the Library

390 Bacula Version 5.0.3

and then relink to produce a modified executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the Library will not necessarily be able to
recompile the application to use the modified definitions.)

• b) Use a suitable shared library mechanism for linking with the Library. A suitable mechanism is
one that (1) uses at run time a copy of the library already present on the user’s computer system,
rather than copying library functions into the executable, and (2) will operate properly with a modified
version of the library, if the user installs one, as long as the modified version is interface-compatible
with the version that the work was made with.

• c) Accompany the work with a written offer, valid for at least three years, to give the same user the
materials specified in Subsection 6a, above, for a charge no more than the cost of performing this
distribution.

• d) If distribution of the work is made by offering access to copy from a designated place, offer equivalent
access to copy the above specified materials from the same place.

• e) Verify that the user has already received a copy of these materials or that you have already sent
this user a copy.

For an executable, the required form of the ”work that uses the Library” must include any data and utility
programs needed for reproducing the executable from it. However, as a special exception, the materials to
be distributed need not include anything that is normally distributed (in either source or binary form) with
the major components (compiler, kernel, and so on) of the operating system on which the executable runs,
unless that component itself accompanies the executable.

It may happen that this requirement contradicts the license restrictions of other proprietary libraries that
do not normally accompany the operating system. Such a contradiction means you cannot use both them
and the Library together in an executable that you distribute.

7. You may place library facilities that are a work based on the Library side-by-side in a single library
together with other library facilities not covered by this License, and distribute such a combined library,
provided that the separate distribution of the work based on the Library and of the other library facilities
is otherwise permitted, and provided that you do these two things:

• a) Accompany the combined library with a copy of the same work based on the Library, uncombined
with any other library facilities. This must be distributed under the terms of the Sections above.

• b) Give prominent notice with the combined library of the fact that part of it is a work based on the
Library, and explaining where to find the accompanying uncombined form of the same work.

8. You may not copy, modify, sublicense, link with, or distribute the Library except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, link with, or distribute the Library
is void, and will automatically terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses terminated so long as such parties
remain in full compliance.

9. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Library or its derivative works. These actions are prohibited by
law if you do not accept this License. Therefore, by modifying or distributing the Library (or any work based
on the Library), you indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the Library), the recipient automatically
receives a license from the original licensor to copy, distribute, link with or modify the Library subject to
these terms and conditions. You may not impose any further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for enforcing compliance by third parties with this License.

11. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License.

Bacula Version 5.0.3 391

If you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Library at all. For example, if a
patent license would not permit royalty-free redistribution of the Library by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply, and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or
to contest validity of any such claims; this section has the sole purpose of protecting the integrity of the
free software distribution system which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or she is willing to distribute software
through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

12. If the distribution and/or use of the Library is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Library under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

13. The Free Software Foundation may publish revised and/or new versions of the Lesser General Public
License from time to time. Such new versions will be similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library specifies a version number of this License
which applies to it and ”any later version”, you have the option of following the terms and conditions either
of that version or of any later version published by the Free Software Foundation. If the Library does not
specify a license version number, you may choose any version ever published by the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free programs whose distribution conditions
are incompatible with these, write to the author to ask for permission. For software which is copyrighted
by the Free Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for
this. Our decision will be guided by the two goals of preserving the free status of all derivatives of our free
software and of promoting the sharing and reuse of software generally.

NO WARRANTY

15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE
THE LIBRARY ”AS IS” WITHOUTWARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE LIBRARY (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU
OR THIRD PARTIES OR A FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFT-
WARE), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

392 Bacula Version 5.0.3

49.10 How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest possible use to the public, we recommend
making it free software that everyone can redistribute and change. You can do so by permitting redistribution
under these terms (or, alternatively, under the terms of the ordinary General Public License).

To apply these terms, attach the following notices to the library. It is safest to attach them to the start of
each source file to most effectively convey the exclusion of warranty; and each file should have at least the
”copyright” line and a pointer to where the full notice is found.

{\it one line to give the library’s name and an idea of what it does.}

Copyright (C) {\it year} {\it name of author}

This library is free software; you can redistribute it and/or

modify it under the terms of the GNU Lesser General Public

License as published by the Free Software Foundation; either

version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

License along with this library; if not, write to the Free Software

Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301

USA

Also add information on how to contact you by electronic and paper mail.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a ”copyright
disclaimer” for the library, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in

the library "Frob" (a library for tweaking knobs) written

by James Random Hacker.

{\it signature of Ty Coon}, 1 April 1990

Ty Coon, President of Vice

That’s all there is to it! Return to GNU’s home page.

FSF & GNU inquiries & questions to gnu@gnu.org. Other ways to contact the FSF.

Comments on these web pages to webmasters@www.gnu.org, send other questions to gnu@gnu.org.

Copyright notice above. Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA USA

Updated: 27 Nov 2000 paulv

http://www.gnu.org/home.html
mailto:gnu@gnu.org
http://www.gnu.org/home.html#ContactInfo
mailto:webmasters@www.gnu.org
mailto:gnu@gnu.org

Chapter 50

Thanks

I thank everyone who has helped this project. Unfortunately, I cannot thank everyone (bad memory).
However, the AUTHORS file in the main source code directory should include the names of all persons
who have contributed to the Bacula project. Just the same, I would like to include thanks below to special
contributors as well as to the major contributors to the current release.

Thanks to Richard Stallman for starting the Free Software movement and for bringing us gcc and all the
other GNU tools as well as the GPL license.

Thanks to Linus Torvalds for bringing us Linux.

Thanks to all the Free Software programmers. Without being able to peek at your code, and in some cases,
take parts of it, this project would have been much more difficult.

Thanks to John Walker for suggesting this project, giving it a name, contributing software he has written,
and for his programming efforts on Bacula as well as having acted as a constant sounding board and source
of ideas.

Thanks to the apcupsd project where I started my Free Software efforts, and from which I was able to borrow
some ideas and code that I had written.

Special thanks to D. Scott Barninger for writing the bacula RPM spec file, building all the RPM files and
loading them onto Source Forge. This has been a tremendous help.

Many thanks to Karl Cunningham for converting the manual from html format to LaTeX. It was a major
effort flawlessly done that will benefit the Bacula users for many years to come. Thanks Karl.

Thanks to Dan Langille for the incredible amount of testing he did on FreeBSD. His perseverance is truly
remarkable. Thanks also for the many contributions he has made to improve Bacula (pthreads patch for
FreeBSD, improved start/stop script and addition of Bacula userid and group, stunnel, ...), his continuing
support of Bacula users. He also wrote the PostgreSQL driver for Bacula and has been a big help in correcting
the SQL.

Thanks to multiple other Bacula Packagers who make and release packages for different platforms for Bacula.

Thanks to Christopher Hull for developing the native Win32 Bacula emulation code and for contributing it
to the Bacula project.

Thanks to Robert Nelson for bringing our Win32 implementation up to par with all the same features that
exist in the Unix/Linux versions. In addition, he has ported the Director and Storage daemon to Win32!

Thanks to Thorsten Engel for his excellent knowledge of Win32 systems, and for making the Win32 File
daemon Unicode compatible, as well as making the Win32 File daemon interface to Microsoft’s Volume
Shadow Copy (VSS). These two are big pluses for Bacula!

Thanks to Landon Fuller for writing both the communications and the data encryption code for Bacula.

393

394 Bacula Version 5.0.3

Thanks to Arno Lehmann for his excellent and infatigable help and advice to users.

Thanks to all the Bacula users, especially those of you who have contributed ideas, bug reports, patches,
and new features.

Bacula can be enabled with data encryption and/or communications encryption. If this is the case,
you will be including OpenSSL code that that contains cryptographic software written by Eric Young
(eay@cryptsoft.com) and also software written by Tim Hudson (tjh@cryptsoft.com).

The Bat (Bacula Administration Tool) graphs are based in part on the work of the Qwt project
(http://qwt.sf.net).

The original variable expansion code used in the LabelFormat comes from the Open Source Software Project
(www.ossp.org). It has been adapted and extended for use in Bacula. This code is now deprecated.

There have been numerous people over the years who have contributed ideas, code, and help to the Bacula
project. The file AUTHORS in the main source release file contains a list of contributors. For all those who
I have left out, please send me a reminder, and in any case, thanks for your contribution.

Thanks to the Free Software Foundation Europe e.V. for assuming the responsibilities of protecting the
Bacula copyright.

Copyrights and Trademarks

Certain words and/or products are Copyrighted or Trademarked such as Windows (by Microsoft). Since
they are numerous, and we are not necessarily aware of the details of each, we don’t try to list them here.
However, we acknowledge all such Copyrights and Trademarks, and if any copyright or trademark holder
wishes a specific acknowledgment, notify us, and we will be happy to add it where appropriate.

Bacula Version 5.0.3 395

50.1 Bacula Bugs

Well fortunately there are not too many bugs, but thanks to Dan Langille, we have a bugs database where
bugs are reported. Generally, when a bug is fixed, a patch for the currently released version will be attached
to the bug report.

The directory patches in the current SVN always contains a list of the patches that have been created for
the previously released version of Bacula. In addition, the file patches-version-number in the patches
directory contains a summary of each of the patches.

A ”raw” list of the current task list and known issues can be found in kernstodo in the main Bacula source
directory.

http://bugs.bacula.org

General Index

*JobLevel , 368
*JobType , 368
-prefix, 81
--docdir configure option, 52
--htmldir configure option, 53
--plugindir configure option, 53
-datadir, 81
-disable-ipv6, 81, 83
-disable-nls, 83
-enable-bat, 81
-enable-batch-insert, 81
-enable-build-dird, 83
-enable-build-stored, 83
-enable-bwx-console, 82
-enable-client-only, 83
-enable-conio, 84
-enable-largefile, 83
-enable-readline, 84
-enable-smartalloc, 81
-enable-static-cons, 83
-enable-static-dir, 83
-enable-static-fd, 82
-enable-static-sd, 82
-enable-static-tools, 82
-enable-tray-monitor, 82
-mandir, 81
-sbindir, 81
-sysconfdir, 81
-with-archivedir, 84
-with-base-port, 85
-with-db-name, 86
-with-db-user, 86
-with-dir-group, 85
-with-dir-password, 85
-with-dir-user, 85
-with-dump-email, 85
-with-fd-group, 86
-with-fd-password, 85
-with-fd-user, 86
-with-libintl-prefix, 84
-with-mon-dir-password, 86
-with-mon-fd-password, 86
-with-mon-sd-password, 86
-with-mysql, 84
-with-pid-dir, 85
-with-postgresql, 84
-with-python, 84
-with-readline, 84
-with-sd-group, 85
-with-sd-password, 85

-with-sd-user, 85
-with-sqlite3, 83
-with-subsys-dir, 85
-with-tcp-wrappers, 84
-with-working-dir, 85

MAJOR WARNING , 288

Accurate Backup, 29
ACL Updates, 32
Actual Conf Files, 249
Adapting Your mtx-changer script, 278
Adding a Second Client , 104
Additional Resources, 319
Address, 121
Advantages , 261, 262
Advantages of Bacula Over Other Backup Pro-

grams , 57
alert, 198
Algorithm

New Volume, 228
Recycling , 228

all, 198
Allow Duplicate Jobs, 37, 134
Allow Higher Duplicates, 37, 134
Allow Mixed Priority, 47
Alternate Disaster Recovery Suggestion for Win32

Systems, 318
ANSI and IBM Tape Labels, 291
append, 196
Arguments

Command Line , 214
Attribute Despooling, 52
Attributes

Restoring Directory , 216
Authorization

Names Passwords and , 117
Auto Starting the Daemons, 89
Autochanger

Simulating Barcodes in your , 277
Using the , 279

Autochanger Support , 267
Autochangers

Supported, 283
Supported , 64

Automated Disk Backup, 247
Automatic Generation of Bootstrap Files , 370
Automatic Pruning, 226
Automatic Pruning and Recycling Example , 232
Automatic Volume Labeling , 237

396

Bacula Version 5.0.3 397

Automatic Volume Recycling , 225
AutoPrune , 354
Aware

FreeBSD Users Be , 64

Backing up
Partitions , 156

Backing up Raw Partitions , 156
Backing Up the WinNT/XP/2K System State,

305
Backing Up Third Party Databases , 361
Backing up to Multiple Disks , 241
Backing Up Your Bacula Database , 359
Backing Up Your Bacula Database - Security Con-

siderations , 360
Backup

Simple One Tape , 261
Backup Strategies , 261
Backups

slow, 133, 176
Backward Compatibility, 364
Bacula

Before Running , 95
Disaster Recovery Using, 309
Installing, 73, 89
Running , 71
Upgrading, 74
What is , 1
Who Needs , 1

Bacula Autochanger Interface , 281
Bacula Bugs , 395
Bacula Components or Services , 1
Bacula Configuration , 4
Bacula Copyright, Trademark, and Licenses, 373
Bacula Security Issues, 363
Barcode Support , 280
Bare Metal Recovery on Linux with a Rescue CD,

310
Bare Metal Recovery using a LiveCD, 314
Base Jobs, 259
Basic Volume Management, 235
Bat Enhancements, 49
Before Running Bacula , 95
Beta Releases, 75
bextract handles Win32 non-portable data, 38
Boot with your Rescue CDROM, 311
Bootstrap Example, 371
Bootstrap File , 367
Bootstrap File Directive, 48
Bootstrap File Format , 367
Brief Tutorial , 95
Broken pipe, 176, 180
bscan, 371

bootstrap, 371
bscan bootstrap, 371
Bugs

Bacula , 395
Linux Problems or, 314

Bugs and Other Considerations, 317
Building a File Daemon or Client, 89

Building Bacula from Source, 77
Building Bacula with Encryption Support, 328

Cancel Lower Level Duplicates, 134
Cancel Queued Duplicates, 38, 136
Cancel Running Duplicates, 37, 136
Capabilities, 192
catalog, 197
Catalog Format, 36
Catalog Maintenance , 353
Catalog Resource, 168
CDROM

Bare Metal Recovery on Linux with a Rescue,
310

Boot with your Rescue, 311
Certificate

Creating a Self-signed , 322
Getting a CA Signed , 323

Changing Cartridges , 276
Character Sets, 114
Client

Adding a Second , 104
Building a File Daemon or, 89
Win32 Specific File daemon Command Line

Options, 306
Client , 368
Client Connect Wait, 180
Client Resource, 159
Client Resource , 175, 204
Client/File daemon Configuration , 175
Clients

Considerations for Multiple , 242
Command

Console Restore, 207
Full Form of the Update Slots , 277
Restore, 207

Command Line Arguments , 214
Command Separator, 46
Commands

Console, 202
File Selection , 218
Other Useful Console , 107

Comments, 115
Communications Encryption, 321
Compacting Your MySQL Database , 354
Compacting Your PostgreSQL Database , 358
Compacting Your SQLite Database , 359
Concurrent Disk Jobs, 238
Concurrent Jobs, 121
CONDITIONS

TERMS AND , 382, 387
Configuration

Bacula , 4
Client/File daemon , 175
Console, 199
Monitor , 203
Storage Daemon, 179

Configure Options, 81
Configuring and Testing TCP Wrappers, 364
Configuring the Console Program , 68

398 Bacula Version 5.0.3

Configuring the Director, 119
Configuring the Director , 70
Configuring the File daemon , 69
Configuring the Monitor Program , 69
Configuring the Storage daemon , 70
Connect Timeout, 49
Considerations

Bugs and Other, 317
Important, 309
Windows Compatibility, 299
Windows NTFS Naming , 158

console, 197
Console Additions, 46
Console Commands, 202
Console Configuration, 199
Console Resource, 170, 200
Console Restore Command, 207
ConsoleFont Resource, 200
Contents

Table of , 381, 386
Conventions Used in this Document , 4
Converting from MySQL to PostgreSQL , 345
Copy, 253
Copy Jobs, 29
Copyrights and Trademarks , 394
Count, 368
Counter Resource, 171
Creating a Pool , 109
Creating a Self-signed Certificate , 322
Credits , 347
Critical Items , 93
Critical Items to Implement Before Production ,

93
Current Implementation Restrictions , 57
Current State of Bacula , 55
Customizing the Configuration Files , 113

Daemon
Configuring the File , 69
Configuring the Storage , 70
Detailed Information for each , 118

Daemon Command Line Options , 108
Daemons

Auto Starting the, 89
Starting the , 96

Daily Tape Rotation , 262
Daily, Weekly, Monthly Tape Usage Example , 230
Data Encryption, 327
Data Spooling , 287
Data Spooling Directives , 287
Database

Backing Up Your Bacula , 359
Backing Up Your Bacula Database - Security

Considerations , 360
Compacting Your MySQL , 354
Compacting Your PostgreSQL , 358
Compacting Your SQLite , 359
MySQL Server Has Gone Away, 356
MySQL Table is Full, 355
Re-initializing the Catalog , 339, 344, 351

Repairing Your MySQL , 355
Repairing Your PostgreSQL , 356
Restoring, 220
Starting the , 96

Database Performance Issues, 356
Database Performance Issues Indexes, 357
Database Size , 361
Databases

Backing Up Third Party , 361
dbcheck enhancements, 52
Dealing with Multiple Magazines , 276
Dealing with Win32 Problems, 297
Debug Daemon Output , 107
Decrypting with a Master Key, 328
Dependency Packages, 76
Design

Overall, 248
Design Limitations or Restrictions , 58
Detailed Information for each Daemon , 118
Details

Practical , 261, 263
Details , 331
Device Configuration Records , 270
Device Resource, 181
Devices

Multiple, 269
devices

SCSI, 268
Devices that require a mount (DVD), 189
Differential Max Wait Time, 50
Differential Pool, 249
Difficulties Connecting from the FD to the SD, 108
Directives

Data Spooling , 287
Edit Codes, 189
Pruning , 226

Director
Configuring the, 119
Configuring the , 70

director, 196
Director Resource, 120, 181, 199
Director Resource , 177, 203
Director Resource Types, 119
Directories

Excluding Files and , 156
Directory

Get Rid of the /lib/tls , 71
Disadvantages , 261, 263
Disaster

Preparing Solaris Before a, 316
Disaster Recovery , 72
Disaster Recovery of Win32 Systems, 317
Disaster Recovery Using Bacula, 309
Disclaimer , 374
Disk

Automated Backup, 247
Disk Volumes, 235
Disks

Backing up to Multiple , 241
Document

Bacula Version 5.0.3 399

Conventions Used in this , 4
Domain

Public , 373
Drive

Testing Bacula Compatibility with Your
Tape, 71

Drives
Supported Tape , 63
Unsupported Tape , 64

Duplicate Job Proximity, 136
Duplicate Jobs, 37
DVD

Devices that require a mount, 189

Edit Codes for Mount and Unmount Directives ,
189

Enable VSS, 301
Encryption

Communications, 321
Data, 327
Transport, 321

Encryption Technical Details, 328
error, 197
Errors

Restore, 218
Example

Automatic Pruning and Recycling , 232
Bootstrap, 371
Daily Weekly Monthly Tape Usage , 230
Data Encryption Configuration File, 329
File Daemon Configuration File, 329
TLS Configuration Files, 323
Verify Configuration , 334

Example , 239
Example Client Configuration File , 178
Example Configuration File , 274
Example Data Encryption Configuration, 329
Example Director Configuration File, 172
Example Migration Jobs, 257
Example Restore Job Resource , 218
Example Scripts , 269
Examples

FileSet , 151
Excluding Files and Directories , 156
Extended Attributes, 33

fatal, 197
FD Version, 50
FDL , 373
Fiduciary License Agreement , 374
File

Bootstrap , 367
Example Client Configuration , 178
Example Configuration , 274
Example Director Configuration, 172
Sample Console Configuration, 202
Sample Storage Daemon Configuration, 192

file, 196
File Deduplication, 259
File Retention , 353

File Selection Commands , 218
FileIndex, 368
Filename

Selecting Files by , 212
FileRegex, 368
Files

Actual Conf, 249
Automatic Generation of Bootstrap , 370
Customizing the Configuration , 113
Including other Configuration , 115
Modifying the Bacula Configuration, 92
Problems Restoring , 217
Restoring Your , 102
Setting Up Bacula Configuration , 68
Testing your Configuration , 71

FileSet
Testing Your , 158
Windows Example , 157

FileSet Examples, 151
FileSet Resource, 140
FileSets

Windows , 156
Fills

When The Tape , 105
Firewalls

Windows, 302
Format

Bootstrap, 367
Resource Directive , 115

Found
What To Do When Differences Are , 333

FreeBSD, 88
FreeBSD Bare Metal Recovery, 315
FreeBSD Issues , 278
FreeBSD Users Be Aware , 64
ftruncate for NFS Volumes, 49
Full Form of the Update Slots Command , 277
Full Pool, 248

General, 199, 309
General , 207
Generating Private/Public Encryption Keypairs,

329
Get Rid of the /lib/tls Directory , 71
Getting a CA Signed Certificate , 323
Getting Started with Bacula , 67
GNOME, 91
GNU Free Documentation License, 375
GNU GENERAL PUBLIC LICENSE , 381
GNU General Public License , 381
GNU LESSER GENERAL PUBLIC LICENSE ,

386
GNU Lesser General Public License , 386
GPL , 373

Have
Knowing What SCSI Devices You , 268

Heartbeat Interval, 176, 180
How to Apply These Terms to Your New Libraries

, 392

400 Bacula Version 5.0.3

How to Apply These Terms to Your New Programs
, 385

IgnoreDir, 39, 151
Implemented

What, 55
Important Considerations, 309
Important Migration Considerations, 256
Including other Configuration Files , 115
Incremental Max Wait Time, 50
Incremental Pool, 249
info, 197
Installation, 293
Installing and Configuring MySQL , 337
Installing and Configuring MySQL – Phase I , 337
Installing and Configuring MySQL – Phase II , 338
Installing and Configuring PostgreSQL , 341
Installing and Configuring SQLite , 349
Installing and Configuring SQLite – Phase I , 349
Installing and Configuring SQLite – Phase II , 350
Installing Bacula, 73, 89
Installing MySQL from RPMs, 340
Installing PostgreSQL from RPMs, 344
Installing Tray Monitor, 91
Interactions Between the Bacula Services, 7
Interface

Bacula Autochanger , 281
Issues

Bacula Security, 363
FreeBSD , 278

Items
Critical , 93
Recommended , 94

Items to Note, 58

Job
Running a , 98

Job , 368
Job Resource, 122
Job Retention , 353
JobDefs Resource, 137
JobId , 368
Jobs

Querying or Starting Jobs, 96
Understanding, 67

KDE, 92
Key Concepts and Resource Records , 235
Knowing What SCSI Devices You Have , 268

Labeling
Automatic Volume , 237
Specifying Slots When , 275

Labeling Volumes with the Console Program , 110
Labeling Your Volumes , 109
Labels

Tape, 291
Understanding Pools Volumes and , 67

LGPL , 373
libdbi Framework, 45
Libraries

How to Apply These Terms to Your New , 392
libwrappers, 84, 364
LICENSE

GNU GENERAL PUBLIC , 381
GNU LESSER GENERAL PUBLIC , 386

License
GNU Free Documentation, 375
GNU General Public , 381
GNU Lesser General Public , 386

Licenses
Bacula Copyright Trademark, 373

Linking Bacula with MySQL , 339
Linking Bacula with SQLite , 350
Linux Problems or Bugs, 314
list joblog, 46
LiveCD

Bare Metal Recovery using a LiveCD, 314
Log Rotation , 72
Log Watch, 72

Magazines
Dealing with Multiple , 276

mail, 197
mail on error, 197
mail on success, 197
Maintenance

Catalog , 353
Making Bacula Use a Single Tape, 230
Management

Basic Volume, 235
Managers

Other window, 92
Manually Changing Tapes , 262
Manually Recycling Volumes , 233
Manually resetting the Permissions, 303
Max Run Sched Time, 50
Max Run Time directives, 50
Max Wait Time, 50
MaxDiffInterval, 39
MaxFullInterval, 38
MaximumConsoleConnections, 52
Message Resource, 178
Messages Resource, 169, 192, 195
Microsoft Exchange Server 2003/2007 Plugin, 42
Migrating from SQLite to MySQL or PostgreSQL,

359
Migration, 253
Misc New Features, 47
Modifying the Bacula Configuration Files, 92
Monitor

Installing Tray, 91
Monitor Configuration , 203
Monitor Resource , 203
mount, 198
Multi-drive Example Configuration File , 274
Multiple Clients, 242
Multiple Devices, 269
MySQL

Installing and Configuring , 337
Installing from RPMs, 340

Bacula Version 5.0.3 401

Linking Bacula with , 339
Migrating from SQLite to , 359

MySQL Server Has Gone Away, 356
MySQL Table is Full, 355

Names, Passwords and Authorization , 117
New Features, 29
New Volume Algorithm, 228
Notes

Other Make, 90
notsaved, 197

One Files Configure Script, 88
operator, 197
Options

Configure, 81
Daemon Command Line , 108

Other Make Notes, 90
Other Points , 288
Other Useful Console Commands , 107
Other window managers, 92
Output

Debug Daemon , 107
Overall Design, 248

Packages
Dependency, 76

Passwords, 117
Performance

Database, 356, 357
Periods

Setting Retention , 353
Permissions

Manually resetting the, 303
Phase I

Installing and Configuring MySQL – , 337
Installing and Configuring SQLite – , 349

Phase II
Installing and Configuring MySQL – , 338
Installing and Configuring SQLite – , 350

Plugin, 40
Plugin Directory, 40
Plugin Options, 40
Plugin Options ACL, 40
Points

Other , 288
Pool

Creating a , 109
Differential, 249
Full, 248
Incremental, 249

Pool Options to Limit the Volume Usage , 236
Pool Resource, 162
Post Win32 Installation, 297
PostgreSQL

Configuring PostgreSQL – , 342
Converting from MySQL to , 345
Installing , 341
Installing and Configuring , 341
Installing from RPMs, 344

Practical Details , 261, 263

Preamble , 381, 386
Preparing Solaris Before a Disaster, 316
Problem, 247
Problems

VSS, 301
Windows Backup, 303
Windows Ownership and Permissions, 303
Windows Restore, 302

Problems Restoring Files , 217
Production

Critical Items to Implement Before , 93
Program

Configuring the Console , 68
Configuring the Monitor , 69
Labeling Volumes with the Console , 110
Quitting the Console , 104

Programs
Advantages of Bacula Over Other Backup ,

57
How to Apply These Terms to Your New , 385

Pruning
Automatic, 226

Pruning Directives , 226
Public Domain , 373

Querying or starting Jobs, 96
Quick Start, 80
Quick Start , 5
Quitting the Console Program , 104

Re-initializing the Catalog Database , 339, 344,
351

Recognized Primitive Data Types , 116
Recommended Items , 94
Recommended Options for Most Systems, 86
Record

Sample Director’s Console , 206
Sample File daemon’s Director , 206
Sample Storage daemon’s Director , 206

Records
Device Configuration , 270
Key Concepts and Resource , 235

Recovery
Bare Metal Recovery using a LiveCD, 314
Disaster , 72
Disaster Recovery, 309
FreeBSD Bare Metal, 315
Solaris Bare Metal, 316
Windows Disaster, 302

Recycle Pool, 50
Recycle Status , 229
Recycling

Automatic Volume , 225
Restricting the Number of Volumes and Re-

cycling, 237
Recycling Algorithm , 228
Red Hat, 86
Release Files, 73
Release Numbering, 75
Repairing Your MySQL Database , 355

402 Bacula Version 5.0.3

Repairing Your PostgreSQL Database , 356
Requirements, 310

System , 59
Rescue

Bare Metal Recovery using a LiveCD, 314
Disaster Recovery, 309
FreeBSD Bare Metal, 315

Resetting Directory and File Ownership and Per-
missions on Win32 Systems, 317

Resource
Catalog, 168
Client, 159
Client , 175, 204
Console, 170, 200
ConsoleFont, 200
Counter, 171
Device, 181
Director, 120, 181, 199
Director , 177, 203
Example Restore Job , 218
FileSet, 140
Job, 122
JobDefs, 137
Message , 178
Messages, 169, 192, 195
Monitor , 203
Pool, 162
Schedule, 137
Storage, 160, 179
Storage , 204

Resource Directive Format , 115
Resource Types , 117
Resources

Additional, 319
Restore, 13
Restore Command, 207
Restore Directories, 209
Restore Errors, 218
Restore menu, 25
restored, 198
Restoring a Client System, 310
Restoring a Server, 313
Restoring Directory Attributes , 216
Restoring Files Can Be Slow , 217
Restoring on Windows , 216
Restoring to a Running System, 318
Restoring When Things Go Wrong , 220
Restoring Your Database, 220
Restoring Your Files , 102
Restricting the Number of Volumes and Recycling,

237
Restrictions

Current Implementation , 57
Design Limitations or , 58

Rotation
Daily Tape , 262
Log , 72

Running a Job , 98
Running as non-root , 366
Running Bacula , 71

Running the Verify , 332
RunScript Enhancements, 49

Sample Console Configuration File, 202
Sample Director’s Console record. , 206
Sample File daemon’s Director record. , 206
Sample Storage Daemon Configuration File, 192
Sample Storage daemon’s Director record. , 206
Sample Tray Monitor configuration, 205
Schedule Resource, 137
Schedules

Technical Notes on, 140
Understanding, 67

Scratch Pool, 168
ScratchPool, 51
Script

One File Configure, 88
Scripts

Example , 269
SCSI devices, 268
SD

Difficulties Connecting from the FD to the
SD, 108

Security, 363
Using Bacula to Improve Computer , 331

security, 198
Selecting Files by Filename , 212
Server

Restoring a, 313
Services

Bacula Components or , 1
Interactions Between the Bacula, 7

Setting Retention Periods , 353
Setting Up Bacula Configuration Files , 68
Shared objects, 34
Shutting down Windows Systems, 307
Simple One Tape Backup , 261
Simulating Barcodes in your Autochanger , 277
Simultaneous Jobs, 121
Size

Database , 361
skipped, 197
Slot , 368
Slots , 269
Slow

Restoring Files Can Be , 217
slow, 133, 176
Solaris, 87
Solaris Bare Metal Recovery, 316
Solution, 247
Source

Building Bacula from, 77
Source Address, 26
Source Files, 73
Spaces

Upper/Lower Case, 115
Specifications

Tape, 64
Specifying Slots When Labeling , 275
Spooling

Bacula Version 5.0.3 403

Data , 287
SpoolSize, 52
SQLite

Installing and Configuring , 349
Linking Bacula with , 350
Testing , 350

Start
Quick, 80
Quick , 5

Starting the Daemons , 96
Starting the Database , 96
State

Backing Up the WinNT/XP/2K System, 305
State File, 38
Static linking, 34
Statistics, 289
Statistics Enhancements, 50
Status

Recycle , 229
Status Enhancements, 49
StatusSlots, 46
stderr, 197
stdout, 197
Steps to Take Before Disaster Strikes, 309
Storage Daemon Configuration, 179
Storage Resource, 160, 179
Storage Resource , 204
Strategies

Backup , 261
Stream , 368
Strikes

Steps to Take Before Disaster, 309
Support

Autochanger , 267
Barcode , 280

Supported Autochanger Models, 283
Supported Autochangers , 64
Supported Operating Systems, 77
Supported Operating Systems , 61
Supported Tape Drives , 63
syslog, 197
System

Restoring a Client, 310
Restoring to a Running, 318

System Requirements , 59
Systems

Alternate Disaster Recovery Suggestion for
Win32, 318

Disaster Recovery of Win32, 317
Recommended Options for Most, 86
Resetting Directory and File Ownership and

Permissions on Win32, 317
Shutting down Windows, 307
Supported Operating, 77
Supported Operating , 61

Table of Contents , 381, 386
Tape

Making Bacula Use a Single, 230
Tape Specifications, 64

Tapes
Manually Changing , 262

TCP Wrappers, 84, 364
Technical Notes on Schedules, 140
terminate, 197
Terminology , 5
TERMS AND CONDITIONS , 382, 387
Testing Bacula Compatibility with Your Tape

Drive, 71
Testing SQLite , 350
Testing the Autochanger , 278
Testing your Configuration Files , 71
Testing Your FileSet , 158
Thanks , 393
The bpipe Plugin, 41
TLS, 321
TLS – Communications Encryption, 321
TLS Authentication, 38
TLS Configuration Files, 323
Trademark , 374
Trademarks

Copyrights and , 394
Transport Encryption, 321
Tray Monitor Security, 205
Tuning, 347
Tutorial

Brief , 95
Types

Director Resource, 119
Recognized Primitive Data , 116
Resource , 117

Understanding Pools, Volumes and Labels , 67
Unicode, 306
Uninstalling Bacula on Win32, 297
Unsupported Tape Drives , 64
Upgrading, 74, 295, 339–341, 346

MySQL , 340
PostgreSQL , 346

Upgrading Bacula, 74
Upgrading MySQL , 340
Upgrading PostgreSQL , 346
Upper and Lower Case and Spaces, 115
Usage

Pool Options to Limit the Volume , 236
Windows Port, 302

Use
What Database to, 80

to include other files, 115
Using Bacula to Improve Computer Security , 331
Using File Relocation, 215
Using Pools to Manage Volumes, 247
Using the Autochanger , 279

Vbackup, 34
VerId, 52
Verify

Running the , 332
Verify Configuration Example , 334
Version Numbering, 75

404 Bacula Version 5.0.3

Virtual Backup, 34
Virtual Tape Emulation, 48
VolBlock, 368
VolFile, 368
volmgmt, 198
VolSessionId , 368
VolSessionTime , 368
Volume , 367
Volume Shadow Copy Service, 300
Volumes

Labeling Your , 109
Manually Recycling , 233
Using Pools to Manage, 247

VSS, 300
VSS Problems, 301

WARNING
MAJOR , 288

warning, 197
Watch

Log, 72
What Bacula is Not, 7
What Database to Use?, 80
What is Bacula? , 1
What is Implemented, 55
What To Do When Differences Are Found , 333
When The Tape Fills , 105
Who Needs Bacula? , 1
Win32, 88

Dealing with Problems, 297
Installation, 293
Post Installation, 297
Uninstalling Bacula, 297

Win32 Path Length Restriction, 306
Win32 Specific File daemon Command Line Op-

tions, 306
Win64 Client, 36
Windows

Considerations for Filename Specifications,
306

Restoring on , 216
Windows Backup Problems, 303
Windows Compatibility Considerations, 299
Windows Disaster Recovery, 302
Windows Example FileSet , 157
Windows FileSets , 156
Windows Firewalls, 302
Windows NTFS Naming Considerations , 158
Windows Ownership and Permissions Problems,

303
Windows Port Usage, 302
Windows Restore Problems, 302
Windows Version of Bacula, 293
Wrappers

TCP, 84, 364

Director Index

*WrapCounter, 171

Accurate, 125
accurate, 143
aclsupport, 147
actiononpurge, 166
AddPrefix, 133
Address, 121, 159, 160, 199
AddSuffix, 133
Admin, 123
Allow Mixed Priority, 137
AllowCompression, 14, 162
always, 134
append, 196
Autochanger, 161
AutoPrune, 160, 165

Backup, 123
Backups

slow, 133
Base, 127
basejob, 143
Bootstrap, 126

Catalog, 125, 159, 169, 171
Catalog Files, 165
CatalogACL, 171
checkfilechanges, 146
Cleaning Prefix, 167
Client, 126
Client (or FileDaemon), 159
Client Address, 159
Client Run After Job, 133
Client Run Before Job, 133
ClientACL, 170
Clone a Job, 136
CommandACL, 171
compression, 143
Console, 122
count , 219
Counter, 171

days, 117
DB Address, 169
DB Name, 169
DB Port, 169
DB Socket, 169
Description, 120
destination, 195
Device, 161
Differential, 124

Differential Backup Pool, 127
Differential Max Run Time, 127
Differential Wait Run Time, 127
DifferentialPool, 138
dir , 219
DirAddress, 122
DirAddresses, 121
Directive

*WrapCounter, 171
accurate, 143
aclsupport, 147
AddPrefix, 133
AddSuffix, 133
AllowCompression, 162
Autochanger, 161
AutoPrune, 160, 165
Base, 127
basejob, 143
Bootstrap, 126
Catalog, 159, 169, 171
Catalog Files, 165
CatalogACL, 171
checkfilechanges, 146
Cleaning Prefix, 167
Client, 126
Client (or FileDaemon), 159
Client Run After Job, 133
Client Run Before Job, 133
ClientACL, 170
CommandACL, 171
compression, 143
Counter, 171
DB Address, 169
DB Name, 169
DB Port, 169
DB Socket, 169
Description, 120
Device, 161
Differential Backup Pool, 127
Differential Max Run Time, 127
Differential Max Wait Time, 127
DifferentialPool, 138
DirAddress, 122
DirAddresses, 121
DirPort, 121
DriveType, 148
Enable, 123
Enable VSS, 141
Exclude, 141
exclude, 147

405

406 Bacula Version 5.0.3

FD Address, 159
FD Connect Timeout, 121
FD Port, 159
File Retention, 159, 167
FileSet, 127, 141
FileSetACL, 171
fstype, 148
Full Backup Pool, 127
FullPool, 138
hardlinks, 146
Heartbeat, 121, 162
hfsplussupport, 148
honornodumpflag, 145
ignore case, 148
Ignore FileSet Changes, 141
Include, 141
Incremental Backup Pool, 127
Incremental Max Run Time, 127
IncrementalPool, 138
Job, 123
Job Retention, 159, 167
JobACL, 170
JobDefs, 126
keepatime, 146
Label Format, 167
Level, 123, 138
Max Full Interval, 128
Max Run Sched Time, 128
Max Run Time, 127
Max Start Delay, 127
Max Wait Time, 128
Maximum, 171
Maximum Concurrent Jobs, 121, 134, 160,

162
Maximum Volume Bytes, 164
Maximum Volume Files, 164
Maximum Volume Jobs, 164
Maximum Volumes, 163
MaximumConsoleConnections, 122
Media Type, 161
Messages, 120, 127, 138
Minimum, 171
mtimeonly, 146
Name, 120, 123, 137, 141, 159, 160, 163, 169–

171
noatime, 146
onefs, 144
Password, 120, 159, 160, 170
password, 169
Pid Directory, 120
Pool, 127, 138, 163
Pool Type, 163
PoolACL, 171
portable, 145
Prefer Mounted Volumes, 128
Prefix Links, 134
Priority, 136, 160
Prune Files, 128
Prune Jobs, 128
Prune Volumes, 129

Purge Oldest Volume, 167
QueryFile, 121
readfifo, 145
recurse, 145
Recycle, 166
Recycle Current Volume, 167
Recycle Oldest Volume, 166
RecyclePool, 166
regex, 147
regexdir, 147
regexfile, 147
RegexWhere, 134
Replace, 134
Rerun Failed Levels, 133
Reschedule Interval, 134
Reschedule On Error, 134
Reschedule Times, 134
Run, 136, 138
Run After Job, 132
Run Before Job, 132
Run Script, 129
Schedule, 127, 137
ScheduleACL, 171
ScrachPool, 166
Scripts Directory, 121
SD Address, 160
SD Connect Timeout, 121
SD Port, 160
signature, 143
sparse, 145
Spool Attributes, 133
Spool Data, 133
SpoolData, 138
SpoolSize, 138
StatisticsRetention, 122
Storage, 127, 138, 160, 163
StorageACL, 171
strippath, 148
StripPrefix, 133
Type, 123
Use Volume Once, 164
user, 169
VerId, 122
verify, 143
Verify Job, 126
Volume Retention, 165
Volume Use Duration, 164
Where, 133
WhereACL, 171
wild, 146
wilddir, 146
wildfile, 147
Working Directory, 120
Write Bootstrap, 126
Write Part After Job, 137
WritePartAfterJob, 138

Director, 120
director, 196
directory, 116
DIRPort, 199

Bacula Version 5.0.3 407

DirPort, 121
DiskToCatalog, 125
done , 219
DriveType, 148

Enable, 123
Enable VSS, 141, 301
estimate , 219
exclude, 147
Exclude { <file-list> } , 141
Exit Status, 129

FD Connect Timeout, 121
FD Port, 159
file, 196
File Daemon Address, 159
File Retention, 159, 167
FileSet, 127, 141
FileSetACL, 171
find, 219
fstype, 148
Full, 123
Full Backup Pool, 127
FullPool, 138

hardlinks, 146
Heartbeat Interval, 121, 162
hfsplussupport, 148
honornodumpflag, 145
hours , 117

ifnewer, 134
ifolder, 134
ignore case, 148
Ignore FileSet Changes, 141
Include { [Options {<file-options>} ...] <file-

list> } , 141
Incremental, 123
Incremental Backup Pool, 127
Incremental Max Run Time, 127
Incremental Wait Run Time, 127
IncrementalPool, 138
InitCatalog, 125
integer, 116

Job, 123
Job Retention, 159, 167
JobACL, 170
JobDefs, 126

keepatime, 146

Label Format, 167
Level, 123, 138
long integer, 116

MailCommand, 196
mark, 219
Max Full Interval, 128
Max Run Sched Time, 128
Max Run Time, 127
Max Start Delay, 127

Max Wait Time, 128
Maximum, 171
Maximum Concurrent Jobs, 121, 134, 160, 162
Maximum Volume Bytes, 164
Maximum Volume Files, 164
Maximum Volume Jobs, 164
Maximum Volumes, 163
MaximumConsoleConnections, 122
MD5, 143
Media Type, 161
Messages, 120, 127, 138, 195
Minimum, 171
minutes, 117
months , 117
mount, 198
mtimeonly, 146

Name, 120, 123, 137, 141, 159, 160, 163, 169–171,
195

never, 134
noatime, 146

onefs, 144
Options { <file-options> } , 141

Password, 120, 159, 160, 170, 199
password, 116, 169
Pid Directory, 120
Pool, 127, 138, 163
Pool Type, 163
PoolACL, 171
portable, 145
positive integer , 116
Prefer Mounted Volumes, 128
Prefix Links, 134
Priority, 136, 160
Prune Files, 128
Prune Jobs, 128
Prune Volumes, 129
Purge Oldest Volume, 167
pwd , 219

quarters , 117
QueryFile, 121

readfifo, 145
recurse, 145
Recycle, 166
Recycle Current Volume, 167
Recycle Oldest Volume, 166
RecyclePool, 166
regex, 147
regexdir, 147
regexfile, 147
RegexWhere, 134
Replace, 134
Rerun Failed Levels, 133
Reschedule Interval, 134
Reschedule On Error, 134
Reschedule Times, 134
Restore, 123

408 Bacula Version 5.0.3

Run, 136, 138
Run After Job, 132
Run Before Job, 132
RunScript, 129

Schedule, 127, 137
ScheduleACL, 171
ScrachPool, 166
Scripts Directory, 121
SD Connect Timeout, 121
SD Port, 160
seconds, 116
SHA1, 143
signature, 143
size, 116
slow, 133
sparse, 145
Spool Attributes, 133
Spool Data, 133
SpoolData, 138
SpoolSize, 138
StatisticsRetention, 122
Storage, 127, 138, 160, 163
Storage daemon Address, 160
StorageACL, 171
strippath, 148
StripPrefix, 133

time, 116
Type, 123

unmark , 219
Use Volume Once, 164
user, 169

Verify, 123
verify, 143
Verify Job, 126
Volume Retention, 165
Volume Use Duration, 164
VolumeToCatalog, 125

weeks, 117
Where, 133
WhereACL, 171
wild, 146
wilddir, 146
wildfile, 147
Working Directory, 120
Write Bootstrap, 126
Write Part After Job, 137
WritePartAfterJob, 138

years , 117
yes or no , 116

File Daemon Index

*Archive , 6
/about, 306
/events, 306
/help, 306
/install, 306
/kill, 306
/remove, 306
/run, 306
/service, 306
/status, 306
<destination>, 196

, 301

a name , 5, 6
Address , 204, 205
Administrator , 5

Backup , 5
Bootstrap File , 5

Catalog , 5
Client , 5
Client (or FileDaemon), 175
Client (or FileDaemon) , 204
Console , 5

Daemon , 5
Differential , 5
Directive

Client (or FileDaemon), 175
Director, 177
DirSourceAddress, 122
FDAddress, 176
FDAddresses, 176
FDPort, 176
FDSourceAddress, 177
Heartbeat Interval, 176
Maximum Concurrent Jobs, 176
Maximum Network Buffer Size, 177
Monitor, 177
Name, 175, 177
Password, 177
Pid Directory, 175
SDConnectTimeout, 177
Working Directory, 175

Directive , 5
Director, 177
Director , 5, 204
DIRPort , 204
DirSourceAddress, 122

exit , 219

FD Port , 204
FDAddress, 176
FDAddresses, 176
FDPort, 176
FDSourceAddress, 177
File Attributes , 5
File Daemon , 5

Heartbeat Interval, 176
help , 219

Incremental , 6

lsmark, 219

Maximum Concurrent Jobs, 176
Maximum Network Buffer Size, 177
Monitor, 177
Monitor , 6, 203

Name, 175, 177
name, 116
Name , 203–205
name-string, 116
notsaved, 197

OperatorCommand, 196

Password, 177
Password , 203, 204
Pid Directory, 175

quit , 219

Recycle , 227
Refresh Interval , 203
Resource , 6
Restore , 6
restored, 198
Retention Period , 6

Schedule , 6
SD Port , 205
SDConnectTimeout, 177
Service , 6
skipped, 197
stderr, 196
stdout, 196
Storage , 204
Storage Coordinates , 6

409

410 Bacula Version 5.0.3

Storage Daemon , 6
string, 116

VSS Problems, 301

Working Directory, 175

Storage Daemon Index

-c <file> , 108
-d nn , 108

Alert Command, 183
Always Open, 184
Archive Device, 181
Autochanger, 183
Autochanger , 270
Autochanger Resource, 191, 273
Automatic mount, 192
Autoselect, 184

Backward Space File, 187
Backward Space Record, 187
Block Positioning, 188
BSF at EOM, 187

Changer Command, 183
Changer Command , 191, 270, 273
Changer Device, 183, 191, 273
Changer Device , 270
Close on Poll, 185
Connect Wait, 180

Device Maximum Concurrent Jobs, 188
Device Type, 182
Directive

Always Open, 184
Archive Device, 181
Autochanger, 183
Automatic mount, 192
Autoselect, 184
Backward Space File, 187
Backward Space Record, 187
Block Positioning, 188
BSF at EOM, 187
Changer Command, 183
Changer Device, 183
Close on Poll, 185
Connect Wait, 180
Device Maximum Concurrent Jobs, 188
Device Type, 182
Drive Index, 184
Fast Forward Space File, 187
Forward Space File, 187
Forward Space Record, 187
Free Space Command, 190
Hardware End of Medium, 187
Heartbeat Interval, 180
Label media, 192
Maximum block size, 186

Maximum Changer Wait, 184
Maximum Concurrent Jobs, 180
Maximum File Size, 188
Maximum Job Spool Size, 189
Maximum Network Buffer Size, 188
Maximum Open Wait, 184, 185
Maximum Part Size, 189
Maximum Rewind Wait, 184
Maximum Spool Size, 189
Maximum Volume Size, 188
Media Type, 182
Minimum block size, 186
Monitor, 181
Mount Command, 189
Mount Point, 189
Name, 179, 181
New in 3.0.3, 188
Offline On Unmount, 188
Password, 181
Pid Directory, 179
Random access, 185
Removable media, 185
Requires Mount, 189
SDAddress, 180
SDAddresses, 180
SDPort, 180
Spool Directory, 189
TWO EOF, 187
Unmount Command, 190
Use MTIOCGET, 187
Volume Poll Interval, 184
Working Directory, 179
Write Part Command, 190

Drive Index, 184
Drive Index , 271

Fast Forward Space File, 187
Forward Space File, 187
Forward Space Record, 187
Free Space Command, 190

Hardware End of Medium, 187
Heartbeat Interval, 180

Label media, 192

Maximum block size, 186
Maximum Changer Wait, 184
Maximum Changer Wait , 271
Maximum Concurrent Jobs, 180
Maximum File Size, 188

411

412 Bacula Version 5.0.3

Maximum Job Spool Size, 189
Maximum Network Buffer Size, 188
Maximum Open Wait, 184, 185
Maximum Part Size, 189
Maximum Rewind Wait, 184
Maximum Spool Size, 189
Maximum Volume Size, 188
MaximumConcurrentJobs, 184
Media Type, 182
Minimum block size, 186
Monitor, 181
Mount Command, 185, 189
Mount Point, 185, 189
mount storage , 107
mtx-changer list, 278
mtx-changer load, 278
mtx-changer loaded, 278
mtx-changer slots, 278
mtx-changer unload, 278

Name, 179, 181, 191, 273

Offline On Unmount, 188

Password, 181
Password , 205
Pid Directory, 179

quit , 107

Random access, 185
Removable media, 185
Requires Mount, 189
Requires Mount , 185
Resource

Autochanger, 191, 273

Scan , 7
SDAddress, 180
SDAddresses, 180
SDPort, 180
Session , 6
Spool Directory, 189

TWO EOF, 187

Unmount Command, 186, 190
Use MTIOCGET, 187

Verify , 6
Volume , 7
Volume Poll Interval, 184

Working Directory, 179
Write Part Command, 190

Console Index

<destination>, 196

AutoPrune , 227

Console, 201
console, 196
ConsoleFont, 200

Directive
Heartbeat, 177, 201

Director, 199

Font, 200

Heartbeat Interval, 177, 201

list files jobid , 107
list jobid , 107
list jobmedia , 107
list jobs , 107
list jobtotals , 107
list media , 107
list pools , 107

messages , 107

Name, 199–201

Password, 201

status , 107
status dir , 107
status jobid , 107

unmount storage , 107

Volume Retention, 227

413

	What is Bacula?
	Who Needs Bacula?
	Bacula Components or Services
	Bacula Configuration
	Conventions Used in this Document
	Quick Start
	Terminology
	What Bacula is Not
	Interactions Between the Bacula Services

	Release Version 5.0.2 and 5.0.3
	New Features in 5.0.1
	Truncate Volume after Purge
	Allow Higher Duplicates
	Cancel Lower Level Duplicates

	New Features in 5.0.0
	Maximum Concurrent Jobs for Devices
	Restore from Multiple Storage Daemons
	File Deduplication using Base Jobs
	AllowCompression = <yes|no>
	Accurate Fileset Options
	Tab-completion for Bconsole
	Pool File and Job retention
	Read-only File Daemon using capabilities
	Bvfs API
	Testing your Tape Drive
	New Block Checksum Device Directive
	New Bat Features
	Media List View
	Media Information View
	Job Information View
	Autochanger Content View

	Bat on Windows
	New Win32 Installer
	Win64 Installer
	Linux Bare Metal Recovery USB Key
	bconsole Timeout Option
	Important Changes
	Custom Catalog queries
	Deprecated parts

	Misc Changes

	Released Version 3.0.3 and 3.0.3a
	New Features in Released Version 3.0.2
	Full Restore from a Given JobId
	Source Address
	Show volume availability when doing restore
	Accurate estimate command

	New Features in 3.0.0
	Accurate Backup
	Accurate = <yes|no>

	Copy Jobs
	ACL Updates
	Extended Attributes
	Shared objects
	Building Static versions of Bacula
	Virtual Backup (Vbackup)
	Catalog Format
	64 bit Windows Client
	Duplicate Job Control
	Allow Duplicate Jobs = <yes|no>
	Allow Higher Duplicates = <yes|no>
	Cancel Running Duplicates = <yes|no>
	Cancel Queued Duplicates = <yes|no>

	TLS Authentication
	TLS Authenticate = yes

	bextract non-portable Win32 data
	State File updated at Job Termination
	MaxFullInterval = <time-interval>
	MaxDiffInterval = <time-interval>
	Honor No Dump Flag = <yes|no>
	Exclude Dir Containing = <filename-string>
	Bacula Plugins
	Plugin Directory
	Plugin Options
	Plugin Options ACL
	Plugin = <plugin-command-string>

	The bpipe Plugin
	Microsoft Exchange Server 2003/2007 Plugin
	Background
	Concepts
	Installing
	Backing Up
	Restoring
	Restoring to the Recovery Storage Group
	Restoring on Microsoft Server 2007
	Caveats

	libdbi Framework
	Console Command Additions and Enhancements
	Display Autochanger Content
	list joblog job=xxx or jobid=nnn
	Use separator for multiple commands
	Deleting Volumes

	Bare Metal Recovery
	Miscellaneous
	Allow Mixed Priority = <yes|no>
	Bootstrap File Directive – FileRegex
	Bootstrap File Optimization Changes
	Solaris ZFS/NFSv4 ACLs
	Virtual Tape Emulation
	Bat Enhancements
	RunScript Enhancements
	Status Enhancements
	Connect Timeout
	ftruncate for NFS Volumes
	Support for Ubuntu
	Recycle Pool = <pool-name>
	FD Version
	Max Run Sched Time = <time-period-in-seconds>
	Max Wait Time = <time-period-in-seconds>
	Incremental|Differential Max Wait Time = <time-period-in-seconds>
	Max Run Time directives
	Statistics Enhancements
	ScratchPool = <pool-resource-name>
	Enhanced Attribute Despooling
	SpoolSize = <size-specification-in-bytes>
	MaximumConsoleConnections = <number>
	VerId = <string>
	dbcheck enhancements
	--docdir configure option
	--htmldir configure option
	--with-plugindir configure option

	The Current State of Bacula
	What is Implemented
	Advantages Over Other Backup Programs
	Current Implementation Restrictions
	Design Limitations or Restrictions
	Items to Note

	System Requirements
	Supported Operating Systems
	Supported Tape Drives
	Unsupported Tape Drives
	FreeBSD Users Be Aware!!!
	Supported Autochangers
	Tape Specifications

	Getting Started with Bacula
	Understanding Jobs and Schedules
	Understanding Pools, Volumes and Labels
	Setting Up Bacula Configuration Files
	Configuring the Console Program
	Configuring the Monitor Program
	Configuring the File daemon
	Configuring the Director
	Configuring the Storage daemon

	Testing your Configuration Files
	Testing Compatibility with Your Tape Drive
	Get Rid of the /lib/tls Directory
	Running Bacula
	Log Rotation
	Log Watch
	Disaster Recovery

	Installing Bacula
	Source Release Files
	Upgrading Bacula
	Releases Numbering
	Dependency Packages
	Supported Operating Systems
	Building Bacula from Source
	What Database to Use?
	Quick Start
	Configure Options
	Recommended Options for Most Systems
	Red Hat
	Solaris
	FreeBSD
	Win32
	One File Configure Script
	Installing Bacula
	Building a File Daemon or Client
	Auto Starting the Daemons
	Other Make Notes
	Installing Tray Monitor
	GNOME
	KDE
	Other window managers

	Modifying the Bacula Configuration Files

	Critical Items to Implement Before Production
	Critical Items
	Recommended Items

	A Brief Tutorial
	Before Running Bacula
	Starting the Database
	Starting the Daemons
	Using the Director to Query and Start Jobs
	Running a Job
	Restoring Your Files
	Quitting the Console Program
	Adding a Second Client
	When The Tape Fills
	Other Useful Console Commands
	Debug Daemon Output
	Patience When Starting Daemons or Mounting Blank Tapes
	Difficulties Connecting from the FD to the SD
	Daemon Command Line Options
	Creating a Pool
	Labeling Your Volumes
	Labeling Volumes with the Console Program

	Customizing the Configuration Files
	Character Sets
	Resource Directive Format
	Comments
	Upper and Lower Case and Spaces
	Including other Configuration Files
	Recognized Primitive Data Types

	Resource Types
	Names, Passwords and Authorization
	Detailed Information for each Daemon

	Configuring the Director
	Director Resource Types
	The Director Resource
	The Job Resource
	The JobDefs Resource
	The Schedule Resource
	Technical Notes on Schedules
	The FileSet Resource
	FileSet Examples
	Backing up Raw Partitions
	Excluding Files and Directories
	Windows FileSets
	Testing Your FileSet
	The Client Resource
	The Storage Resource
	The Pool Resource
	The Scratch Pool

	The Catalog Resource
	The Messages Resource
	The Console Resource
	The Counter Resource
	Example Director Configuration File

	Client/File daemon Configuration
	The Client Resource
	The Director Resource
	The Message Resource
	Example Client Configuration File

	Storage Daemon Configuration
	Storage Resource
	Director Resource
	Device Resource
	Edit Codes for Mount and Unmount Directives
	Devices that require a mount (DVD)

	Autochanger Resource
	Capabilities
	Messages Resource
	Sample Storage Daemon Configuration File

	Messages Resource
	Console Configuration
	General
	The Director Resource
	The ConsoleFont Resource
	The Console Resource
	Console Commands
	Sample Console Configuration File

	Monitor Configuration
	The Monitor Resource
	The Director Resource
	The Client Resource
	The Storage Resource
	Tray Monitor Security
	Sample Tray Monitor configuration
	Sample File daemon's Director record.
	Sample Storage daemon's Director record.
	Sample Director's Console record.

	The Restore Command
	General
	The Restore Command
	Restore a pruned job using a pattern

	Selecting Files by Filename
	Replace Options
	Command Line Arguments
	Using File Relocation
	Introduction
	RegexWhere Format

	Restoring Directory Attributes
	Restoring on Windows
	Restoring Files Can Be Slow
	Problems Restoring Files
	Restore Errors
	Example Restore Job Resource
	File Selection Commands
	Restoring When Things Go Wrong

	Automatic Volume Recycling
	Automatic Pruning
	Pruning Directives
	Recycling Algorithm
	Recycle Status
	Making Bacula Use a Single Tape
	Daily, Weekly, Monthly Tape Usage Example
	 Automatic Pruning and Recycling Example
	Manually Recycling Volumes

	Basic Volume Management
	Key Concepts and Resource Records
	Pool Options to Limit the Volume Usage
	Automatic Volume Labeling
	Restricting the Number of Volumes and Recycling

	Concurrent Disk Jobs
	An Example
	Backing up to Multiple Disks
	Considerations for Multiple Clients

	Automated Disk Backup
	The Problem
	The Solution
	Overall Design
	Full Pool
	Differential Pool
	Incremental Pool

	The Actual Conf Files

	Migration and Copy
	Migration and Copy Job Resource Directives
	Migration Pool Resource Directives
	Important Migration Considerations
	Example Migration Jobs

	File Deduplication using Base Jobs
	Backup Strategies
	Simple One Tape Backup
	Advantages
	Disadvantages
	Practical Details

	Manually Changing Tapes
	Daily Tape Rotation
	Advantages
	Disadvantages
	Practical Details

	Autochanger Support
	Knowing What SCSI Devices You Have
	Example Scripts
	Slots
	Multiple Devices
	Device Configuration Records

	Autochanger Resource
	An Example Configuration File
	A Multi-drive Example Configuration File
	Specifying Slots When Labeling
	Changing Cartridges
	Dealing with Multiple Magazines
	Simulating Barcodes in your Autochanger
	The Full Form of the Update Slots Command
	FreeBSD Issues
	Testing Autochanger and Adapting mtx-changer script
	Using the Autochanger
	Barcode Support
	Use bconsole to display Autochanger content
	Bacula Autochanger Interface

	Supported Autochangers
	Data Spooling
	Data Spooling Directives
	!!! MAJOR WARNING !!!
	Other Points

	Using Bacula catalog to grab information
	Job statistics

	ANSI and IBM Tape Labels
	Director Pool Directive
	Storage Daemon Device Directives

	The Windows Version of Bacula
	Win32 Installation
	Post Win32 Installation
	Uninstalling Bacula on Win32
	Dealing with Win32 Problems
	Windows Compatibility Considerations
	Volume Shadow Copy Service
	VSS Problems
	Windows Firewalls
	Windows Port Usage
	Windows Disaster Recovery
	Windows Restore Problems
	Windows Ownership and Permissions Problems
	Manually resetting the Permissions
	Backing Up the WinNT/XP/2K System State
	Considerations for Filename Specifications
	Win32 Specific File daemon Command Line
	Shutting down Windows Systems

	Disaster Recovery Using Bacula
	General
	Important Considerations
	Steps to Take Before Disaster Strikes
	Bare Metal Recovery on Linux with a Rescue CD
	Requirements
	Restoring a Client System
	Boot with your Rescue CDROM
	Restoring a Server
	Linux Problems or Bugs
	Bare Metal Recovery using a LiveCD
	FreeBSD Bare Metal Recovery
	Solaris Bare Metal Recovery
	Preparing Solaris Before a Disaster
	Bugs and Other Considerations
	Disaster Recovery of Win32 Systems
	Ownership and Permissions on Win32 Systems
	Alternate Disaster Recovery Suggestion for Win32 Systems
	Restoring to a Running System
	Additional Resources

	Bacula TLS – Communications Encryption
	TLS Configuration Directives
	Creating a Self-signed Certificate
	Getting a CA Signed Certificate
	Example TLS Configuration Files

	Data Encryption
	Building Bacula with Encryption Support
	Encryption Technical Details
	Decrypting with a Master Key
	Generating Private/Public Encryption Keys
	Example Data Encryption Configuration

	Using Bacula to Improve Computer Security
	The Details
	Running the Verify
	What To Do When Differences Are Found
	A Verify Configuration Example

	Installing and Configuring MySQL
	Installing and Configuring MySQL – Phase I
	Installing and Configuring MySQL – Phase II
	Re-initializing the Catalog Database
	Linking Bacula with MySQL
	Installing MySQL from RPMs
	Upgrading MySQL

	Installing and Configuring PostgreSQL
	Installing PostgreSQL
	Configuring PostgreSQL
	Re-initializing the Catalog Database
	Installing PostgreSQL from RPMs
	Converting from MySQL to PostgreSQL
	Upgrading PostgreSQL
	Tuning PostgreSQL
	Credits

	Installing and Configuring SQLite
	Installing and Configuring SQLite – Phase I
	Installing and Configuring SQLite – Phase II
	Linking Bacula with SQLite
	Testing SQLite
	Re-initializing the Catalog Database

	Catalog Maintenance
	Setting Retention Periods
	Compacting Your MySQL Database
	Repairing Your MySQL Database
	MySQL Table is Full
	MySQL Server Has Gone Away
	MySQL Temporary Tables
	Repairing Your PostgreSQL Database
	Database Performance Issues
	Performance Issues Indexes
	PostgreSQL Indexes
	MySQL Indexes
	SQLite Indexes

	Compacting Your PostgreSQL Database
	Compacting Your SQLite Database
	Migrating from SQLite to MySQL or PostgreSQL
	Backing Up Your Bacula Database
	Security considerations
	Backing Up Third Party Databases
	Database Size

	Bacula Security Issues
	Backward Compatibility
	Configuring and Testing TCP Wrappers
	Running as non-root

	The Bootstrap File
	Bootstrap File Format
	Automatic Generation of Bootstrap Files
	Bootstrap for bscan
	A Final Bootstrap Example

	Bacula Copyright, Trademark, and Licenses
	FDL
	GPL
	LGPL
	Public Domain
	Trademark
	Fiduciary License Agreement
	Disclaimer

	GNU Free Documentation License
	Table of Contents
	GNU GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS
	How to Apply These Terms to Your New Programs
	Table of Contents
	GNU LESSER GENERAL PUBLIC LICENSE
	Preamble
	TERMS AND CONDITIONS
	How to Apply These Terms to Your New Libraries

	Thanks
	Bacula Bugs

